Journal & Issues

Volume 13 (2023): Issue 4 (October 2023)

Volume 13 (2023): Issue 3 (June 2023)

Volume 13 (2023): Issue 2 (March 2023)

Volume 13 (2023): Issue 1 (January 2023)

Volume 12 (2022): Issue 4 (October 2022)

Volume 12 (2022): Issue 3 (July 2022)

Volume 12 (2021): Issue 2 (April 2021)

Volume 12 (2022): Issue 1 (January 2022)

Volume 11 (2021): Issue 4 (October 2021)

Volume 11 (2021): Issue 3 (July 2021)

Volume 11 (2021): Issue 2 (April 2021)

Volume 11 (2021): Issue 1 (January 2021)

Volume 10 (2020): Issue 4 (October 2020)

Volume 10 (2020): Issue 3 (July 2020)

Volume 10 (2020): Issue 2 (April 2020)

Volume 10 (2020): Issue 1 (January 2020)

Volume 9 (2019): Issue 4 (October 2019)

Volume 9 (2019): Issue 3 (July 2019)

Volume 9 (2019): Issue 2 (April 2019)

Volume 9 (2019): Issue 1 (January 2019)

Volume 8 (2018): Issue 4 (October 2018)

Volume 8 (2018): Issue 3 (July 2018)

Volume 8 (2018): Issue 2 (April 2018)

Volume 8 (2018): Issue 1 (January 2018)

Volume 7 (2017): Issue 4 (October 2017)

Volume 7 (2017): Issue 3 (July 2017)

Volume 7 (2017): Issue 2 (April 2017)

Volume 7 (2017): Issue 1 (January 2017)

Volume 6 (2016): Issue 4 (October 2016)

Volume 6 (2016): Issue 3 (July 2016)

Volume 6 (2016): Issue 2 (April 2016)

Volume 6 (2016): Issue 1 (January 2016)

Volume 5 (2015): Issue 4 (October 2015)

Volume 5 (2015): Issue 3 (July 2015)

Volume 5 (2015): Issue 2 (April 2015)

Volume 5 (2015): Issue 1 (January 2015)

Volume 4 (2014): Issue 4 (October 2014)

Volume 4 (2014): Issue 3 (July 2014)

Volume 4 (2014): Issue 2 (April 2014)

Volume 4 (2014): Issue 1 (January 2014)

Volume 3 (2013): Issue 4 (October 2013)

Volume 3 (2013): Issue 3 (July 2013)

Volume 3 (2013): Issue 2 (April 2013)

Volume 3 (2013): Issue 1 (January 2013)

Journal Details
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

Search

Volume 7 (2017): Issue 3 (July 2017)

Journal Details
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

Search

0 Articles
Open Access

Parallel MCNN (pMCNN) with Application to Prototype Selection on Large and Streaming Data

Published Online: 20 Mar 2017
Page range: 155 - 169

Abstract

Abstract

The Modified Condensed Nearest Neighbour (MCNN) algorithm for prototype selection is order-independent, unlike the Condensed Nearest Neighbour (CNN) algorithm. Though MCNN gives better performance, the time requirement is much higher than for CNN. To mitigate this, we propose a distributed approach called Parallel MCNN (pMCNN) which cuts down the time drastically while maintaining good performance. We have proposed two incremental algorithms using MCNN to carry out prototype selection on large and streaming data. The results of these algorithms using MCNN and pMCNN have been compared with an existing algorithm for streaming data.

Keywords

  • prototype selection
  • one-pass algorithm
  • streaming data
  • distributed algorithm
Open Access

MIDACO Parallelization Scalability on 200 MINLP Benchmarks

Published Online: 20 Mar 2017
Page range: 171 - 181

Abstract

Abstract

This contribution presents a numerical evaluation of the impact of parallelization on the performance of an evolutionary algorithm for mixed-integer nonlinear programming (MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is assessed with gradually increasing parallelization factor from one to three hundred. The results demonstrate that the efficiency of the algorithm can be significantly improved by parallelized function evaluation. Furthermore, the results indicate that the scale-up behaviour on the efficiency resembles a linear nature, which implies that this approach will even be promising for very large parallelization factors. The presented research is especially relevant to CPU-time consuming real-world applications, where only a low number of serial processed function evaluation can be calculated in reasonable time.

Keywords

  • MINLP
  • optimization
  • MIDACO
  • parallelization
Open Access

Directed Evolution – A New Metaheuristc for Optimization

Published Online: 20 Mar 2017
Page range: 183 - 200

Abstract

Abstract

Recently, we have witnessed an infusion of calculating models based on models offered by nature, models with more or less fidelity to the original that have led to the development of various problem-solving computational procedures. Starting from the observation of natural processes at the macroscopic or microscopic level, various methods have been developed. Technological progress today allows the accelerated reproduction of natural phenomena in the laboratory, which is why a new niche has arisen in the landscape of nature-inspired methods. This niche is devoted to the emulation of artificial biological processes in computational problem-solving methods.

This paper proposes a novel approach, which is to develop novel computational methods in the field of Natural Computing based on the semi-natural process, namely Directed Evolution. In the first step we explain Directed Evolution, defined as the artificial reproduction of the process of evolution in the laboratory in order to obtain performing biological entities. For computer scientists, this provide a strong source of inspiration in the search for efficient methods of optimization. The computational model that proposed here largely overlaps with the Directed Evolution protocol, and the results obtained in the numerical experiments confirm the viability of such techniques inspired by processes which are more artificial than natural. The paper describes a novel general algorithm, inspired by Directed Evolution, which is able to solve different optimization problems, such as single optimization, multiobjective optimization and combinatorial optimization problems.

Keywords

  • optimization
  • directed evolution
  • nature-inspired computing
Open Access

MapReduce and Semantics Enabled Event Detection using Social Media

Published Online: 20 Mar 2017
Page range: 201 - 213

Abstract

Abstract

Social media is playing an increasingly important role in reporting major events happening in the world. However, detecting events from social media is challenging due to the huge magnitude of the data and the complex semantics of the language being processed. This paper proposes MASEED (MapReduce and Semantics Enabled Event Detection), a novel event detection framework that effectively addresses the following problems: 1) traditional data mining paradigms cannot work for big data; 2) data preprocessing requires significant human efforts; 3) domain knowledge must be gained before the detection; 4) semantic interpretation of events is overlooked; 5) detection scenarios are limited to specific domains. In this work, we overcome these challenges by embedding semantic analysis into temporal analysis for capturing the salient aspects of social media data, and parallelizing the detection of potential events using the MapReduce methodology. We evaluate the performance of our method using real Twitter data. The results will demonstrate the proposed system outperforms most of the state-of-the-art methods in terms of accuracy and efficiency.

Keywords

  • event detection
  • social media
  • semantic relatedness
  • MapReduce
Open Access

A Smart Amalgamation of Spectral Neural Algorithm for Nonlinear Lane-Emden Equations with Simulated Annealing

Published Online: 20 Mar 2017
Page range: 215 - 224

Abstract

Abstract

The actual motivation of this paper is to develop a functional link between artificial neural network (ANN) with Legendre polynomials and simulated annealing termed as Legendre simulated annealing neural network (LSANN). To demonstrate the applicability, it is employed to study the nonlinear Lane-Emden singular initial value problem that governs the polytropic and isothermal gas spheres. In LSANN, minimization of error is performed by simulated annealing method while Legendre polynomials are used in hidden layer to control the singularity problem. Many illustrative examples of Lane-Emden type are discussed and results are compared with the formerly used algorithms. As well as with accuracy of results and tranquil implementation it provides the numerical solution over the entire finite domain.

Keywords

  • Lane-Emden equations
  • simulated annealing
  • legendre polynomials
  • neural network
0 Articles
Open Access

Parallel MCNN (pMCNN) with Application to Prototype Selection on Large and Streaming Data

Published Online: 20 Mar 2017
Page range: 155 - 169

Abstract

Abstract

The Modified Condensed Nearest Neighbour (MCNN) algorithm for prototype selection is order-independent, unlike the Condensed Nearest Neighbour (CNN) algorithm. Though MCNN gives better performance, the time requirement is much higher than for CNN. To mitigate this, we propose a distributed approach called Parallel MCNN (pMCNN) which cuts down the time drastically while maintaining good performance. We have proposed two incremental algorithms using MCNN to carry out prototype selection on large and streaming data. The results of these algorithms using MCNN and pMCNN have been compared with an existing algorithm for streaming data.

Keywords

  • prototype selection
  • one-pass algorithm
  • streaming data
  • distributed algorithm
Open Access

MIDACO Parallelization Scalability on 200 MINLP Benchmarks

Published Online: 20 Mar 2017
Page range: 171 - 181

Abstract

Abstract

This contribution presents a numerical evaluation of the impact of parallelization on the performance of an evolutionary algorithm for mixed-integer nonlinear programming (MINLP). On a set of 200 MINLP benchmarks the performance of the MIDACO solver is assessed with gradually increasing parallelization factor from one to three hundred. The results demonstrate that the efficiency of the algorithm can be significantly improved by parallelized function evaluation. Furthermore, the results indicate that the scale-up behaviour on the efficiency resembles a linear nature, which implies that this approach will even be promising for very large parallelization factors. The presented research is especially relevant to CPU-time consuming real-world applications, where only a low number of serial processed function evaluation can be calculated in reasonable time.

Keywords

  • MINLP
  • optimization
  • MIDACO
  • parallelization
Open Access

Directed Evolution – A New Metaheuristc for Optimization

Published Online: 20 Mar 2017
Page range: 183 - 200

Abstract

Abstract

Recently, we have witnessed an infusion of calculating models based on models offered by nature, models with more or less fidelity to the original that have led to the development of various problem-solving computational procedures. Starting from the observation of natural processes at the macroscopic or microscopic level, various methods have been developed. Technological progress today allows the accelerated reproduction of natural phenomena in the laboratory, which is why a new niche has arisen in the landscape of nature-inspired methods. This niche is devoted to the emulation of artificial biological processes in computational problem-solving methods.

This paper proposes a novel approach, which is to develop novel computational methods in the field of Natural Computing based on the semi-natural process, namely Directed Evolution. In the first step we explain Directed Evolution, defined as the artificial reproduction of the process of evolution in the laboratory in order to obtain performing biological entities. For computer scientists, this provide a strong source of inspiration in the search for efficient methods of optimization. The computational model that proposed here largely overlaps with the Directed Evolution protocol, and the results obtained in the numerical experiments confirm the viability of such techniques inspired by processes which are more artificial than natural. The paper describes a novel general algorithm, inspired by Directed Evolution, which is able to solve different optimization problems, such as single optimization, multiobjective optimization and combinatorial optimization problems.

Keywords

  • optimization
  • directed evolution
  • nature-inspired computing
Open Access

MapReduce and Semantics Enabled Event Detection using Social Media

Published Online: 20 Mar 2017
Page range: 201 - 213

Abstract

Abstract

Social media is playing an increasingly important role in reporting major events happening in the world. However, detecting events from social media is challenging due to the huge magnitude of the data and the complex semantics of the language being processed. This paper proposes MASEED (MapReduce and Semantics Enabled Event Detection), a novel event detection framework that effectively addresses the following problems: 1) traditional data mining paradigms cannot work for big data; 2) data preprocessing requires significant human efforts; 3) domain knowledge must be gained before the detection; 4) semantic interpretation of events is overlooked; 5) detection scenarios are limited to specific domains. In this work, we overcome these challenges by embedding semantic analysis into temporal analysis for capturing the salient aspects of social media data, and parallelizing the detection of potential events using the MapReduce methodology. We evaluate the performance of our method using real Twitter data. The results will demonstrate the proposed system outperforms most of the state-of-the-art methods in terms of accuracy and efficiency.

Keywords

  • event detection
  • social media
  • semantic relatedness
  • MapReduce
Open Access

A Smart Amalgamation of Spectral Neural Algorithm for Nonlinear Lane-Emden Equations with Simulated Annealing

Published Online: 20 Mar 2017
Page range: 215 - 224

Abstract

Abstract

The actual motivation of this paper is to develop a functional link between artificial neural network (ANN) with Legendre polynomials and simulated annealing termed as Legendre simulated annealing neural network (LSANN). To demonstrate the applicability, it is employed to study the nonlinear Lane-Emden singular initial value problem that governs the polytropic and isothermal gas spheres. In LSANN, minimization of error is performed by simulated annealing method while Legendre polynomials are used in hidden layer to control the singularity problem. Many illustrative examples of Lane-Emden type are discussed and results are compared with the formerly used algorithms. As well as with accuracy of results and tranquil implementation it provides the numerical solution over the entire finite domain.

Keywords

  • Lane-Emden equations
  • simulated annealing
  • legendre polynomials
  • neural network