Issues

Journal & Issues

Volume 21 (2022): Issue 1 (March 2022)

Volume 20 (2021): Issue 2 (December 2021)

Volume 20 (2021): Issue 1 (July 2021)

Volume 19 (2020): Issue 2 (December 2020)

Volume 19 (2020): Issue 1 (July 2020)

Volume 18 (2019): Issue 3 (December 2019)

Volume 18 (2019): Issue 2 (September 2019)
Special Issue: Selected papers presented at the 12th Symposium of the Section Computer Science in Sport of the German Association of Sport Science (September 4.-7., 2018)

Volume 18 (2019): Issue 1 (July 2019)

Volume 17 (2018): Issue 2 (December 2018)

Volume 17 (2018): Issue 1 (July 2018)

Volume 16 (2017): Issue 3 (December 2017)

Volume 16 (2017): Issue 2 (November 2017)

Volume 16 (2017): Issue 1 (July 2017)

Volume 15 (2016): Issue 2 (December 2016)

Volume 15 (2016): Issue 1 (July 2016)

Journal Details
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English

Search

Volume 20 (2021): Issue 2 (December 2021)

Journal Details
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English

Search

4 Articles
Open Access

Optimizing Player Management Processes in Sports: Translating Lessons from Healthcare Process Improvements to Sports

Published Online: 28 Nov 2021
Page range: 119 - 146

Abstract

Abstract

Typical player management processes focus on managing an athlete’s physical, physiological, psychological, technical and tactical preparation and performance. Current literature illustrates limited attempts to optimize such processes in sports. Therefore, this study aimed to analyze the application of Business Process Management (BPM) in healthcare (a service industry resembling sports) and formulate a model to optimize data driven player management processes in professional sports. A systematic review, adhering to PRISMA framework was conducted on articles extracted from seven databases, focused on using BPM to digitally optimize patient related healthcare processes. Literature reviews by authors was the main mode of healthcare process identification for BPM interventions. Interviews with process owners followed by process modelling were common modes of process discovery. Stakeholder and value-based analysis highlighted potential optimization areas. In most articles, details on process redesign strategies were not explicitly provided. New digital system developments and implementation of Business Process Management Systems were common. Optimized processes were evaluated using usability assessments and pre-post statistical analysis of key process performance indicators. However, the scientific rigor of most experiments designed for such latter evaluations were suboptimal. From the findings, a stepwise approach to optimize data driven player management processes in professional sports has been proposed.

Keywords

  • BUSINESS PROCESS MANAGEMENT
  • PLAYER MANAGEMENT
  • SPORTS PROCESS OPTIMIZATION
  • SPORT INFORMATICS
  • PATIENT MANAGEMENT
Open Access

A Data Mining Approach to Predict Non-Contact Injuries in Young Soccer Players

Published Online: 28 Nov 2021
Page range: 147 - 163

Abstract

Abstract

Predicting and avoiding an injury is a challenging task. By exploiting data mining techniques, this paper aims to identify existing relationships between modifiable and non-modifiable risk factors, with the final goal of predicting non-contact injuries. Twenty-three young soccer players were monitored during an entire season, with a total of fifty-seven non-contact injuries identified. Anthropometric data were collected, and the maturity offset was calculated for each player. To quantify internal training/match load and recovery status of the players, we daily employed the session-RPE method and the total quality recovery (TQR) scale. Cumulative workloads and the acute: chronic workload ratio (ACWR) were calculated. To explore the relationship between the various risk factors and the onset of non-contact injuries, we performed a classification tree analysis. The classification tree model exhibited an acceptable discrimination (AUC=0.76), after receiver operating characteristic curve (ROC) analysis. A low state of recovery, a rapid increase in the training load, cumulative workload, and maturity offset were recognized by the data mining algorithm as the most important injury risk factors.

Keywords

  • INJURY
  • YOUTH SOCCER
  • DATA MINING
  • PREDICTION
  • TRAINING LOAD
Open Access

Offseason Fitness Tests a Collegiate Basketball Strength Coach Should Choose to Predict In-Season Perfomance Based on Sex

Published Online: 28 Nov 2021
Page range: 164 - 174

Abstract

Abstract

Quantification of athletic performance via analysis of scores of off-season fitness tests has become an essential part of the modern strength and conditioning coach (SCC). Player Efficiency Rating (PER) and Efficiency index (EFF) are two of the most used in-season basketball performance metrics in the US. We collected data from male and female basketball players of a National Collegiate Athletic Association (NCAA) program. Based on sex, we examined a) if unadjusted PER (uPER) and EFF reflect different amounts of information and b) which fitness tests predict those two indices more accurately. Our results showed lower means and less variability of the fitness tests scores in women than men. The correlation between uPER and EFF in men was moderate and strong in women. In men, no strong correlation was found between any fitness test and EFF, while full court sprint was strongly correlated with uPER. In women, strong correlations were detected between a) the T-drill and EFF and b) the foul court sprint, the vertical jump, and the T-drill and uPER. The collegiate SCCs should consider that off-season scores of a) the foul court drill may predict uPER more accurately in both men and women and b) the T-drill may predict both EFF and uPER more precisely in women.

Keywords

  • STRENGTH AND CONDITIONING
  • EFFICIENCY INDEX
  • SPORTS PERFORMANCE ANALYSIS
  • PERFORMANCE INDICATOR
  • NCAA
Open Access

A scoping review using social network analysis techniques to summarise the prevalance of methods used to acquire data for athlete survelliance in sport

Published Online: 28 Nov 2021
Page range: 175 - 197

Abstract

Abstract

To aid the implementation of athlete surveillance systems relative to logistical circumstances, easy-to-access information that summarises the extent to which methods of acquiring data are used in practice to monitor athletes is required. In this scoping review, Social Network Analysis and Mining (SNAM) techniques were used to summarise and identify the most prevalent combinations of methods used to monitor athletes in research studying team, individual, field- and court-based sports (357 articles; SPORTDiscus, MEDLINE, CINHAL, and WebOfScience; 2014-2018 inc.) . The most prevalent combination in team and field-based sports were HR and/or sRPE (internal) and GPS, whereas in individual and court-based sports, internal methods (e.g., HR and sRPE) were most prevalent. In court-based sports, where external methods were occasionally collected in combination with internal methods of acquiring data, the use of accelerometers or inertial measuring units (ACC/IMU) were most prevalent. Whilst individual and court-based sports are less researched, this SNAM-based summary reveals that court-based sports may lead the way in using ACC/IMU to monitor athletes. Questionnaires and self-reported methods of acquiring data are common in all categories of sport. This scoping review provides coaches, sport-scientists and researchers with a data-driven visual resource to aid the selection of methods of acquiring data from athletes in all categories of sport relative to logistical circumstances. A guide on how to practically implement a surveillance system based on the visual summaries provided herein, is also presented.

Keywords

  • TRAINING LOAD
  • ATHLETE MONITORING
  • ACCELEROMETRY
  • CENTRALITY
  • FIEDLER VECTOR
4 Articles
Open Access

Optimizing Player Management Processes in Sports: Translating Lessons from Healthcare Process Improvements to Sports

Published Online: 28 Nov 2021
Page range: 119 - 146

Abstract

Abstract

Typical player management processes focus on managing an athlete’s physical, physiological, psychological, technical and tactical preparation and performance. Current literature illustrates limited attempts to optimize such processes in sports. Therefore, this study aimed to analyze the application of Business Process Management (BPM) in healthcare (a service industry resembling sports) and formulate a model to optimize data driven player management processes in professional sports. A systematic review, adhering to PRISMA framework was conducted on articles extracted from seven databases, focused on using BPM to digitally optimize patient related healthcare processes. Literature reviews by authors was the main mode of healthcare process identification for BPM interventions. Interviews with process owners followed by process modelling were common modes of process discovery. Stakeholder and value-based analysis highlighted potential optimization areas. In most articles, details on process redesign strategies were not explicitly provided. New digital system developments and implementation of Business Process Management Systems were common. Optimized processes were evaluated using usability assessments and pre-post statistical analysis of key process performance indicators. However, the scientific rigor of most experiments designed for such latter evaluations were suboptimal. From the findings, a stepwise approach to optimize data driven player management processes in professional sports has been proposed.

Keywords

  • BUSINESS PROCESS MANAGEMENT
  • PLAYER MANAGEMENT
  • SPORTS PROCESS OPTIMIZATION
  • SPORT INFORMATICS
  • PATIENT MANAGEMENT
Open Access

A Data Mining Approach to Predict Non-Contact Injuries in Young Soccer Players

Published Online: 28 Nov 2021
Page range: 147 - 163

Abstract

Abstract

Predicting and avoiding an injury is a challenging task. By exploiting data mining techniques, this paper aims to identify existing relationships between modifiable and non-modifiable risk factors, with the final goal of predicting non-contact injuries. Twenty-three young soccer players were monitored during an entire season, with a total of fifty-seven non-contact injuries identified. Anthropometric data were collected, and the maturity offset was calculated for each player. To quantify internal training/match load and recovery status of the players, we daily employed the session-RPE method and the total quality recovery (TQR) scale. Cumulative workloads and the acute: chronic workload ratio (ACWR) were calculated. To explore the relationship between the various risk factors and the onset of non-contact injuries, we performed a classification tree analysis. The classification tree model exhibited an acceptable discrimination (AUC=0.76), after receiver operating characteristic curve (ROC) analysis. A low state of recovery, a rapid increase in the training load, cumulative workload, and maturity offset were recognized by the data mining algorithm as the most important injury risk factors.

Keywords

  • INJURY
  • YOUTH SOCCER
  • DATA MINING
  • PREDICTION
  • TRAINING LOAD
Open Access

Offseason Fitness Tests a Collegiate Basketball Strength Coach Should Choose to Predict In-Season Perfomance Based on Sex

Published Online: 28 Nov 2021
Page range: 164 - 174

Abstract

Abstract

Quantification of athletic performance via analysis of scores of off-season fitness tests has become an essential part of the modern strength and conditioning coach (SCC). Player Efficiency Rating (PER) and Efficiency index (EFF) are two of the most used in-season basketball performance metrics in the US. We collected data from male and female basketball players of a National Collegiate Athletic Association (NCAA) program. Based on sex, we examined a) if unadjusted PER (uPER) and EFF reflect different amounts of information and b) which fitness tests predict those two indices more accurately. Our results showed lower means and less variability of the fitness tests scores in women than men. The correlation between uPER and EFF in men was moderate and strong in women. In men, no strong correlation was found between any fitness test and EFF, while full court sprint was strongly correlated with uPER. In women, strong correlations were detected between a) the T-drill and EFF and b) the foul court sprint, the vertical jump, and the T-drill and uPER. The collegiate SCCs should consider that off-season scores of a) the foul court drill may predict uPER more accurately in both men and women and b) the T-drill may predict both EFF and uPER more precisely in women.

Keywords

  • STRENGTH AND CONDITIONING
  • EFFICIENCY INDEX
  • SPORTS PERFORMANCE ANALYSIS
  • PERFORMANCE INDICATOR
  • NCAA
Open Access

A scoping review using social network analysis techniques to summarise the prevalance of methods used to acquire data for athlete survelliance in sport

Published Online: 28 Nov 2021
Page range: 175 - 197

Abstract

Abstract

To aid the implementation of athlete surveillance systems relative to logistical circumstances, easy-to-access information that summarises the extent to which methods of acquiring data are used in practice to monitor athletes is required. In this scoping review, Social Network Analysis and Mining (SNAM) techniques were used to summarise and identify the most prevalent combinations of methods used to monitor athletes in research studying team, individual, field- and court-based sports (357 articles; SPORTDiscus, MEDLINE, CINHAL, and WebOfScience; 2014-2018 inc.) . The most prevalent combination in team and field-based sports were HR and/or sRPE (internal) and GPS, whereas in individual and court-based sports, internal methods (e.g., HR and sRPE) were most prevalent. In court-based sports, where external methods were occasionally collected in combination with internal methods of acquiring data, the use of accelerometers or inertial measuring units (ACC/IMU) were most prevalent. Whilst individual and court-based sports are less researched, this SNAM-based summary reveals that court-based sports may lead the way in using ACC/IMU to monitor athletes. Questionnaires and self-reported methods of acquiring data are common in all categories of sport. This scoping review provides coaches, sport-scientists and researchers with a data-driven visual resource to aid the selection of methods of acquiring data from athletes in all categories of sport relative to logistical circumstances. A guide on how to practically implement a surveillance system based on the visual summaries provided herein, is also presented.

Keywords

  • TRAINING LOAD
  • ATHLETE MONITORING
  • ACCELEROMETRY
  • CENTRALITY
  • FIEDLER VECTOR

Plan your remote conference with Sciendo