1. bookVolume 20 (2021): Issue 2 (December 2021)
Journal Details
License
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

A scoping review using social network analysis techniques to summarise the prevalance of methods used to acquire data for athlete survelliance in sport

Published Online: 28 Nov 2021
Volume & Issue: Volume 20 (2021) - Issue 2 (December 2021)
Page range: 175 - 197
Journal Details
License
Format
Journal
eISSN
1684-4769
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

To aid the implementation of athlete surveillance systems relative to logistical circumstances, easy-to-access information that summarises the extent to which methods of acquiring data are used in practice to monitor athletes is required. In this scoping review, Social Network Analysis and Mining (SNAM) techniques were used to summarise and identify the most prevalent combinations of methods used to monitor athletes in research studying team, individual, field- and court-based sports (357 articles; SPORTDiscus, MEDLINE, CINHAL, and WebOfScience; 2014-2018 inc.) . The most prevalent combination in team and field-based sports were HR and/or sRPE (internal) and GPS, whereas in individual and court-based sports, internal methods (e.g., HR and sRPE) were most prevalent. In court-based sports, where external methods were occasionally collected in combination with internal methods of acquiring data, the use of accelerometers or inertial measuring units (ACC/IMU) were most prevalent. Whilst individual and court-based sports are less researched, this SNAM-based summary reveals that court-based sports may lead the way in using ACC/IMU to monitor athletes. Questionnaires and self-reported methods of acquiring data are common in all categories of sport. This scoping review provides coaches, sport-scientists and researchers with a data-driven visual resource to aid the selection of methods of acquiring data from athletes in all categories of sport relative to logistical circumstances. A guide on how to practically implement a surveillance system based on the visual summaries provided herein, is also presented.

Keywords

Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. Int J Soc Res Meth, 8(1), 19-32. doi: 10.1080/136455703200011961610.1080/1364557032000119616 Search in Google Scholar

Atkins, J., & Boman, E.(1998). A spectral algorithm for seriation and the consecutive ones problem, SIAM J Comput. 28(1), 297–310. doi: 10.1137/S009753979528577110.1137/S0097539795285771 Search in Google Scholar

Bailey, J.A., Gastin, P.B., Mackey, L., Dwyer, D.B. (2017). The Player Load Associated With Typical Activities in Elite Netball. Int J Sports Physiol Perform. 12(9), 1218-1223. doi: 10.1123/ijspp.2016-037810.1123/ijspp.2016-037828182504 Search in Google Scholar

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique Identification. J Math Social. 2(1), 113–120. doi: 10.1080/0022250X.1972.998980610.1080/0022250X.1972.9989806 Search in Google Scholar

dos Santos, R.P., & Lopes, G.R. (2019). Thematic series on Social Network Analysis and Mining. J Internet Serv Appl 10, 14. doi: 10.1186/s13174-019-0113-z10.1186/s13174-019-0113-z Search in Google Scholar

Bourdon, P., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M., Gabbett, T., Coutts, A., Burgess, D., Gregson, W., & Cable, T. (2017). Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform, 12(S12), S2161-S2170. doi: 10.1123/IJSPP.2017-020810.1123/IJSPP.2017-020828463642 Search in Google Scholar

Buchheit, M., Simpson, M., Al Haddad, H., Bourdon, P., & Mendez-Villanueva, A. (2012). Monitoring changes in physical performance with heart rate measures in young soccer players. Eur J Appl Physiol, 112(2), 711-23. doi: 10.1007/s00421-011-2014-010.1007/s00421-011-2014-021656232 Search in Google Scholar

Campbell, B., Bove, D., Ward, P., Vargas, A., & Dolan, J. (2017). Quantification of Training Load and Training Response for Improving Athletic Performance. Str Cond J, 39(5), 3-13. Doi: 10.1519/SSC.000000000000033410.1519/SSC.0000000000000334 Search in Google Scholar

Coyne, J.O., Haff, G.G, Coutts, A,J., Newton, R.U., & Nimphius, S. (2018). The current state of subjective training load monitoring – A practical perspective and call to action. Sports medicine-open. 4(1), 58. doi: 10.1186/s40798-018-0172-x10.1186/s40798-018-0172-x630190630570718 Search in Google Scholar

Drew, M., & Finch, C. (2016). The Relationship Between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. J Sports Med. 46, 861-83. doi: 10.1007/s40279-015-0459-810.1007/s40279-015-0459-826822969 Search in Google Scholar

Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. doi: 10.2307/303354310.2307/3033543 Search in Google Scholar

Fiedler, M. (1973). Algebraic connectivity of graphs. Czech Math J, 23, 298–305. doi: 10.21136/CMJ.1973.10116810.21136/CMJ.1973.101168 Search in Google Scholar

Fruchterman, T. & Reingold, E. (1991), Graph drawing by force directed placement. Softw: Pract. Exper. 21, 1129-1164. doi:10.1002/spe.438021110210.1002/spe.4380211102 Search in Google Scholar

Haddad, M., Stylianides, G., Djaoui, L., Dellal, A., & Chamari, K. (2017). Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Frontiers in Neuroscience. 11, 612. doi: 10.3389/fnins.2017.0061210.3389/fnins.2017.00612567366329163016 Search in Google Scholar

Halson, S. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 44(S2), 139-147. doi: 10.1007/s40279-014-0253-z10.1007/s40279-014-0253-z421337325200666 Search in Google Scholar

Himelboim, I. (2017). Social Network Analysis (Social Media). In The International Encyclopedia of Communication Research Methods (eds J. Matthes, C.S. Davis and R.F. Potter). doi: 10.1002/9781118901731.iecrm023610.1002/9781118901731.iecrm0236 Search in Google Scholar

Impellizzeri, F.M., Marcora, S.M., Coutts, A.J. (2019). Internal and External Training Load: 15 Years On. Int J Sports Physiol Perform. 14(2), 270-273. doi: 10.1123/ijspp.2018-093510.1123/ijspp.2018-093530614348 Search in Google Scholar

Impellizzeri, F.M., Menaspà, P., Coutts, A.J., Kalkhoven, J., Menaspà, M.J. (2020). Training Load and Its Role in Injury Prevention, Part I: Back to the Future. J Athl Train. 55(9), 885-892. doi: 10.4085/1062-6050-500-1910.4085/1062-6050-500-19753494532991701 Search in Google Scholar

Impellizzeri, F.M., McCall, A., Ward, P., Bornn, L., & Coutts, A.J. (2020). Training Load and Its Role in Injury Prevention, Part 2: Conceptual and Methodologic Pitfalls. J Athl Train. 55(9), 893-901. doi: 10.4085/1062-6050-501-1910.4085/1062-6050-501-19753493832991699 Search in Google Scholar

Leppink, J., & Pérez-Fuster, P. (2019). Social Networks as an Approach to Systematic review. Health professions Education. 5(3), 218-224. doi: 10.1016/j.hpe.2018.09.002.10.1016/j.hpe.2018.09.002 Search in Google Scholar

Newton, M., Owen, A., & Baker, J. (2019). Monitoring External and Internal Training Loads: Relationships with Injury Risk in Professional Soccer: A Review. EC Orthopaedics, 10(9), 686-697. Retrieved from https://www.ecronicon.com/ecor/pdf/ECOR-10-00478.pdf Search in Google Scholar

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31, 581–603. doi: 10.1007/BF0228952710.1007/BF022895275232444 Search in Google Scholar

Sands, W. Kavanaugh, A. Murray, S. McNeal, J. & Jemni, M. (2017). Modern Techniques and Technologies Applied to Training and Performance Monitoring. Int J Sports Physiol Perform, 12(S2), S2-63-S2-72. doi: 10.1123/ijspp.2016-040510.1123/ijspp.2016-040527918664 Search in Google Scholar

Staunton, C., Wundersitz, D., Gordon, B., Kingsley, M. (2017). Construct Validity of Accelerometry-Derived Force to Quantify Basketball Movement Patterns. Int J Sports Med. 38(14),1090-1096. doi: 10.1055/s-0043-11922410.1055/s-0043-11922428965347 Search in Google Scholar

Saw, A., Luana, C., & Gastin, P. (2016). Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Brit J Sports Med, 50, 281-291. doi: 10.1136/bjsports-2015-09475810.1136/bjsports-2015-094758478970826423706 Search in Google Scholar

Soligard, T., Schwellnus, M., T., Alonso, J., Bahr, R., Clarsen, B., Dijkstra, P., Gabbett, T., Glesson, M., Hägglund, M., Hutchinson, M., Van Rensburg, C., Khan, K., Meeusen, R., Orchard, J., Pluim, B., Raftery, M., Budgett, R., Engebretsen, L. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Brit J Sports Med, 50, 1030-1041. doi: 10.1136/bjsports-2016-09658110.1136/bjsports-2016-09658127535989 Search in Google Scholar

Schwellnus, M., Soligard, T., Alonso, J., Bahr, R., Clarsen, B., Dijkstra, P., Gabbett, T., Glesson, M., Hägglund, M., Hutchinson, M., Van Rensburg, C., Meeusen, R., Orchard, J., Pluim, B., Raftery, M., Budgett, R., Engebretsen, L. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Brit J Sports Med, 50, 1043-1052. doi: 10.1136/bjsports-2016-09657210.1136/bjsports-2016-096572501308727535991 Search in Google Scholar

Slininger, B. (2013): Fiedler’s Theory of Spectral Graph Partitioning. University of California. Retrieved from http://www.cs.ucdavis.edu/~bai/ECS231/returnsfinal/Slininger.pdf Search in Google Scholar

Theodoropoulos, J.S., Bettle, J., & Kosy, J.D. (2020). The use of GPS and inertial devices for player monitoring in team sports: A review of current and future applications. Orthopedic reviews. 12(1). 7863. https://doi.org/10.4081/or.2020.786310.4081/or.2020.7863720636332391130 Search in Google Scholar

Tricco, A., Lillie, E., Zarin, W., O’Brien, K., Colquhoun, H., Levac, D., & et al. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 169(7), 467–473. doi: 10.7326/M18-085010.7326/M18-085030178033 Search in Google Scholar

Walker, D., Everson, R., & Fieldsend, J. (2013). Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 17(2), 165-184. doi: 10.1109/TEVC.2012.222506410.1109/TEVC.2012.2225064 Search in Google Scholar

Williams, S., Trewartha, G., Cross, M., Kemp, S., & Stokes, K. (2016). Monitoring What Matters: A Systematic Process for Selecting Training-Load Measures. Int J Sports Physiol Perform, 12(S2), S2-101-S2-106. doi: 10.1123/ijspp.2016-033710.1123/ijspp.2016-033727834553 Search in Google Scholar

von Luxburg, U. (2007). A Tutorial on Spectral Clustering. Stat Comput, 17(4), 395–416. doi: 10.1007/s11222-00 Search in Google Scholar

Young, C.M., Gastin, P.B., Sanders, N., Mackey, L., Dwyer, D.B. (2016). Player Load in Elite Netball: Match, Training, and Positional Comparisons. Int J Sports Physiol Perform. 11(8), 1074-1079. doi: 10.1123/ijspp.2015-015610.1123/ijspp.2015-015627001768 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo