Journal & Issues

Volume 7 (2023): Issue 3 (July 2023)

Volume 7 (2023): Issue 2 (April 2023)

Volume 7 (2023): Issue 1 (January 2023)

Volume 6 (2022): Issue 4 (October 2022)

Volume 6 (2022): Issue 3 (July 2022)

Volume 6 (2022): Issue 2 (April 2022)

Volume 6 (2022): Issue 1 (January 2022)

Volume 5 (2021): Issue 4 (October 2021)

Volume 5 (2021): Issue 3 (July 2021)

Volume 5 (2021): Issue 2 (April 2021)

Volume 5 (2021): Issue s2 (December 2021)

Volume 5 (2021): Issue s1 (June 2021)

Volume 5 (2021): Issue 1 (January 2021)

Volume 4 (2020): Issue 4 (October 2020)

Volume 4 (2020): Issue 3 (July 2020)

Volume 4 (2020): Issue 2 (April 2020)

Volume 4 (2020): Issue 1 (January 2020)

Volume 3 (2019): Issue 4 (October 2019)

Volume 3 (2019): Issue 3 (July 2019)

Volume 3 (2019): Issue 2 (April 2019)

Volume 3 (2019): Issue 1 (January 2019)

Volume 2 (2018): Issue 4 (October 2018)

Volume 2 (2018): Issue 3 (July 2018)

Volume 2 (2018): Issue 2 (April 2018)

Volume 2 (2018): Issue 1 (January 2018)

Volume 2 (2018): Issue s1 (September 2018)

Volume 1 (2017): Issue 4 (October 2017)

Volume 1 (2017): Issue 3 (July 2017)

Volume 1 (2017): Issue s2 (December 2017)
MAGI group activity - Research, diagnosis and treatment of genetic and rare diseases

Volume 1 (2017): Issue 2 (May 2017)

Volume 1 (2017): Issue 1 (January 2017)

Volume 1 (2017): Issue s1 (October 2017)
EBTNA Utility Gene Test on Ophthalmology

Journal Details
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English

Search

Volume 3 (2019): Issue 4 (October 2019)

Journal Details
Format
Journal
eISSN
2564-615X
First Published
30 Jan 2017
Publication timeframe
4 times per year
Languages
English

Search

0 Articles
Open Access

A comparison of machine learning algorithms for the prediction of Hepatitis C NS3 protease cleavage sites

Published Online: 23 Oct 2019
Page range: 167 - 174

Abstract

Abstract

Hepatitis is a global disease that is on the rise and is currently the cause of more deaths than the human immunodeficiency virus each year. As a result, there is an increasing need for antivirals. Previously, effective antivirals have been found in the form of substrate-mimetic antiviral protease inhibitors. The application of machine learning has been used to predict cleavage patterns of viral proteases to provide information for future drug design. This study has successfully applied and compared several machine learning algorithms to hepatitis C viral NS3 serine protease cleavage data. Results have found that differences in sequence-extraction methods can outweigh differences in algorithm choice. Models produced from pseudo-coded datasets all performed with high accuracy and outperformed models created with orthogonal-coded datasets. However, no single pseudo-model performed significantly better than any other. Evaluation of performance measures also show that the correct choice of model scoring system is essential for unbiased model assessment.

Keywords

  • Hepatitis C
  • NS3 protease
  • peptide cleavage
  • machine learning
Open Access

Photosynthetic light reactions in Oryza sativa L. under Cd stress: Influence of iron, calcium, and zinc supplements

Published Online: 23 Oct 2019
Page range: 175 - 181

Abstract

Abstract

Some mineral nutrients may help to alleviate cadmium stress in plants. Therefore, influence of Fe, Ca, and Zn supplements on photosynthesis light reactions under Cd stress studied in two Indian rice cultivars namely, MO-16 and MTU-7029 respectively. Exogenous application of both Fe and Ca ions helped to uphold quantum efficiency and linear electron transport during Cd stress. Also, recovery of biomass noticed during Cd treatment with Fe and Ca supplements. It was found that accumulation of carotenoids as well as non photochemical quenching enhances with Fe, Ca, and Zn supplements. Chlorophyll a/b ratio increased with Cd accumulation as a strategy to increase light harvest. Lipid peroxidation level was ascertained the highest during Cd plus Zn treatments. Above results point that both Fe and Ca ions supplements help to alleviate Cd stress on photosynthesis light reactions of rice plants.

Keywords

  • Cadmium
  • mineral nutrition
  • photosynthesis
  • plant pigments
  • lipid peroxidation
Open Access

Differences in organic matter quality, chemical and microbiological characteristics of two Phaeozems under natural and anthropic influence

Published Online: 23 Oct 2019
Page range: 182 - 189

Abstract

Abstract

The soil degraded and changed by the anthropic activity must be monitored and the awareness of the intrinsic processes will allow a pertinent analysis of the effects of the application of the new technologies on the management and the sustainability of the soil.

Two natural and anthropic Phaeozems were analyzed from the point of view of chemical, microbiological characteristics, quality and composition of organic compounds.

Total values of microbial biomass and bacterial and fungal counts were generally twice higher in Calcaric Phaeozems than in Verti-Stagnic Phaeozems.

The content of humic precursors in Calcaric Phaeozems was quantitatively higher than that determined in Verti-stagnic Phaeozems, with a total content of phenols of 14.6mgGAExg−1d.m., polysaccharides and proteins of 97mgxg−1, respectivelly 16.6mgxl−1.

The ascending chromatograms showed specific distribution and higher density of the organic compounds in the CAFT sub-fraction of the Verti-stagnic Phaeozems. Pfeiffer specific chromatograms revealed an enzyme activity much higher than average at the Verti-stagnic Phaeozems, with a well-characterized functional diversity. The nutritional reserve appeared increased but poorly diversified in the Calcaric Phaeozems. Humification processes are intense, colloidal substances are present, the mineral component is very well integrated in the organic material at the Verti-stagnic Phaeozems and complex protein content is well revealed especially in the Calcaric Phaeozems.

Capillary dynamolysis reflected a characteristic pattern of Phaeozems soils, with particularities for each soil type, represented by colors, contours and particular forms of the specific structures developed.

Both soils presented good conditions for sustaining vegetation either natural or cultivated but results indicated that anthropic intervention determined a more dynamic mineralization of organic matter. Further monitoring of soil organic matter dynamics is needed and adjusting management practices for conservation of biodiversity and global ecosystem protection against the effect of anthropic intervention.

Keywords

  • soil
  • microflora
  • biomass
  • organic matter
  • soil quality
Open Access

Artificial cell microcapsules containing live bacterial cells and activated charcoal for managing renal failure creatinine: preparation and in-vitro analysis

Published Online: 23 Oct 2019
Page range: 190 - 196

Abstract

Abstract

Activated charcoal was microencapsulated with Lactobacillus acidophilus 314 previously adapted for urea uptake. The creatinine removal capacity of this combination microcapsule was evaluated in-vitro in media simulating the small intestine. Results show that microcapsules containing both activated charcoal and L. acidophilus 314 demonstrated potential for decreasing creatinine. Interestingly, when co-encapsulating both activated charcoal and L. acidophilus 314 a smaller decrease in creatinine was observed than when encapsulating them separately. However, co-encapsulated microcapsules were more stable in various parts of the gastrointestinal system and survived longer in storage. These results suggest the feasibility of using microcapsules containing activated charcoal and probiotic bacteria as oral adjuvants for creatinine removal and provides a theoretical model for the use of these microcapsules to remove any unwanted metabolite.

Keywords

  • Artificial cell
  • activated charcoal
  • creatinine
  • microcapsules
  • oral therapy
  • renal failure
  • microbiome
  • live bacteria
Open Access

Polymerization degree-dependent changes in the effects of in vitro chitosan treatments on photosynthetic pigment, protein, and dry matter contents of Ipomoea purpurea

Published Online: 23 Oct 2019
Page range: 197 - 202

Abstract

Abstract

Morning Glory (Ipomoea purpurea (L.) Roth.) is a climbing plant known for its ornamental properties and ease of cultivation in temperate climates. Quality and colour of flowers and leaves, especially in the production of ornamentals, are important parameters both for producers and for customers. This study aimed to investigate the changes in photosynthetic pigment, protein and dry matter content of in vitro-propagated I. purpurea following chitosan treatment with different polymerization degrees (DP) and to determine the indirect effect of this biopolymer on leaves of the plant. Nodal explants of I. purpurea were cultured in medium supplemented with 5, 10 and 20 mg L−1 concentrations of a chitosan oligomers mixture with a variable degree of polymerization (DP) ranging from 2 to 15 or chitosan polymer with DP of 70. It was found that both oligomeric and polymeric chitosan treatments increased chlorophyll-a contents in the leaves when compared to the chitosan-naïve control group. Polymeric chitosan stimulated chlorophyll-b and carotenoid synthesis more effectively than the oligomer mixture. Also, 10 mg L−1 polymeric chitosan better triggered total protein production and plant dry matter content in I. purpurea. The results of this study showed that, due to their stimulatory effects on photosynthetic pigment, protein and plant dry matter production, chitosan oligomers at low concentration and polymers at moderate concentration might be considered as safe and natural biostimulants for ornamental plants which could affect the plant’s attractiveness and commercial success.

Keywords

  • Chitosan
  • dry matter
  • photosynthetic pigments
  • polymerization degree
  • protein
0 Articles
Open Access

A comparison of machine learning algorithms for the prediction of Hepatitis C NS3 protease cleavage sites

Published Online: 23 Oct 2019
Page range: 167 - 174

Abstract

Abstract

Hepatitis is a global disease that is on the rise and is currently the cause of more deaths than the human immunodeficiency virus each year. As a result, there is an increasing need for antivirals. Previously, effective antivirals have been found in the form of substrate-mimetic antiviral protease inhibitors. The application of machine learning has been used to predict cleavage patterns of viral proteases to provide information for future drug design. This study has successfully applied and compared several machine learning algorithms to hepatitis C viral NS3 serine protease cleavage data. Results have found that differences in sequence-extraction methods can outweigh differences in algorithm choice. Models produced from pseudo-coded datasets all performed with high accuracy and outperformed models created with orthogonal-coded datasets. However, no single pseudo-model performed significantly better than any other. Evaluation of performance measures also show that the correct choice of model scoring system is essential for unbiased model assessment.

Keywords

  • Hepatitis C
  • NS3 protease
  • peptide cleavage
  • machine learning
Open Access

Photosynthetic light reactions in Oryza sativa L. under Cd stress: Influence of iron, calcium, and zinc supplements

Published Online: 23 Oct 2019
Page range: 175 - 181

Abstract

Abstract

Some mineral nutrients may help to alleviate cadmium stress in plants. Therefore, influence of Fe, Ca, and Zn supplements on photosynthesis light reactions under Cd stress studied in two Indian rice cultivars namely, MO-16 and MTU-7029 respectively. Exogenous application of both Fe and Ca ions helped to uphold quantum efficiency and linear electron transport during Cd stress. Also, recovery of biomass noticed during Cd treatment with Fe and Ca supplements. It was found that accumulation of carotenoids as well as non photochemical quenching enhances with Fe, Ca, and Zn supplements. Chlorophyll a/b ratio increased with Cd accumulation as a strategy to increase light harvest. Lipid peroxidation level was ascertained the highest during Cd plus Zn treatments. Above results point that both Fe and Ca ions supplements help to alleviate Cd stress on photosynthesis light reactions of rice plants.

Keywords

  • Cadmium
  • mineral nutrition
  • photosynthesis
  • plant pigments
  • lipid peroxidation
Open Access

Differences in organic matter quality, chemical and microbiological characteristics of two Phaeozems under natural and anthropic influence

Published Online: 23 Oct 2019
Page range: 182 - 189

Abstract

Abstract

The soil degraded and changed by the anthropic activity must be monitored and the awareness of the intrinsic processes will allow a pertinent analysis of the effects of the application of the new technologies on the management and the sustainability of the soil.

Two natural and anthropic Phaeozems were analyzed from the point of view of chemical, microbiological characteristics, quality and composition of organic compounds.

Total values of microbial biomass and bacterial and fungal counts were generally twice higher in Calcaric Phaeozems than in Verti-Stagnic Phaeozems.

The content of humic precursors in Calcaric Phaeozems was quantitatively higher than that determined in Verti-stagnic Phaeozems, with a total content of phenols of 14.6mgGAExg−1d.m., polysaccharides and proteins of 97mgxg−1, respectivelly 16.6mgxl−1.

The ascending chromatograms showed specific distribution and higher density of the organic compounds in the CAFT sub-fraction of the Verti-stagnic Phaeozems. Pfeiffer specific chromatograms revealed an enzyme activity much higher than average at the Verti-stagnic Phaeozems, with a well-characterized functional diversity. The nutritional reserve appeared increased but poorly diversified in the Calcaric Phaeozems. Humification processes are intense, colloidal substances are present, the mineral component is very well integrated in the organic material at the Verti-stagnic Phaeozems and complex protein content is well revealed especially in the Calcaric Phaeozems.

Capillary dynamolysis reflected a characteristic pattern of Phaeozems soils, with particularities for each soil type, represented by colors, contours and particular forms of the specific structures developed.

Both soils presented good conditions for sustaining vegetation either natural or cultivated but results indicated that anthropic intervention determined a more dynamic mineralization of organic matter. Further monitoring of soil organic matter dynamics is needed and adjusting management practices for conservation of biodiversity and global ecosystem protection against the effect of anthropic intervention.

Keywords

  • soil
  • microflora
  • biomass
  • organic matter
  • soil quality
Open Access

Artificial cell microcapsules containing live bacterial cells and activated charcoal for managing renal failure creatinine: preparation and in-vitro analysis

Published Online: 23 Oct 2019
Page range: 190 - 196

Abstract

Abstract

Activated charcoal was microencapsulated with Lactobacillus acidophilus 314 previously adapted for urea uptake. The creatinine removal capacity of this combination microcapsule was evaluated in-vitro in media simulating the small intestine. Results show that microcapsules containing both activated charcoal and L. acidophilus 314 demonstrated potential for decreasing creatinine. Interestingly, when co-encapsulating both activated charcoal and L. acidophilus 314 a smaller decrease in creatinine was observed than when encapsulating them separately. However, co-encapsulated microcapsules were more stable in various parts of the gastrointestinal system and survived longer in storage. These results suggest the feasibility of using microcapsules containing activated charcoal and probiotic bacteria as oral adjuvants for creatinine removal and provides a theoretical model for the use of these microcapsules to remove any unwanted metabolite.

Keywords

  • Artificial cell
  • activated charcoal
  • creatinine
  • microcapsules
  • oral therapy
  • renal failure
  • microbiome
  • live bacteria
Open Access

Polymerization degree-dependent changes in the effects of in vitro chitosan treatments on photosynthetic pigment, protein, and dry matter contents of Ipomoea purpurea

Published Online: 23 Oct 2019
Page range: 197 - 202

Abstract

Abstract

Morning Glory (Ipomoea purpurea (L.) Roth.) is a climbing plant known for its ornamental properties and ease of cultivation in temperate climates. Quality and colour of flowers and leaves, especially in the production of ornamentals, are important parameters both for producers and for customers. This study aimed to investigate the changes in photosynthetic pigment, protein and dry matter content of in vitro-propagated I. purpurea following chitosan treatment with different polymerization degrees (DP) and to determine the indirect effect of this biopolymer on leaves of the plant. Nodal explants of I. purpurea were cultured in medium supplemented with 5, 10 and 20 mg L−1 concentrations of a chitosan oligomers mixture with a variable degree of polymerization (DP) ranging from 2 to 15 or chitosan polymer with DP of 70. It was found that both oligomeric and polymeric chitosan treatments increased chlorophyll-a contents in the leaves when compared to the chitosan-naïve control group. Polymeric chitosan stimulated chlorophyll-b and carotenoid synthesis more effectively than the oligomer mixture. Also, 10 mg L−1 polymeric chitosan better triggered total protein production and plant dry matter content in I. purpurea. The results of this study showed that, due to their stimulatory effects on photosynthetic pigment, protein and plant dry matter production, chitosan oligomers at low concentration and polymers at moderate concentration might be considered as safe and natural biostimulants for ornamental plants which could affect the plant’s attractiveness and commercial success.

Keywords

  • Chitosan
  • dry matter
  • photosynthetic pigments
  • polymerization degree
  • protein