The Vienna Basin Transfer Fault System (VBTFS) is the most active fault system in the region between the Eastern Alps, the western Carpathians and the Pannonian Basin. The spatial and temporal distribution of earthquakes along the fault system shows a heterogeneous pattern including a long-time decay of seismicity at the northern part of the VBTFS, which was interpreted to result from a long aftershock sequence subsequent to the 1906 Dobrá Voda earthquake (M=5.7). In this paper we investigate if other segments of the VBTFS display similar long-term declines of seismicity that might indicate long aftershock sequences following strong, yet unrecorded, earthquakes in historical times.
In order to analyse the distribution of seismicity, the VBTFS is divided into arbitrary segments of about 50 km length each. The segments are chosen to overlap each other to avoid missing information from neighbouring segments due to arbitrarily selected segment boundaries. For each segment we analyse the temporal evolution of seismicity and calculate the parameters of the corresponding Gutenberg-Richter (GR) relation.
The temporal seismicity patterns revealed from the segments covering the Dobrá Voda area confirm the protracted aftershock sequence following the 1906 earthquake. All but one of the other segments do not show temporal changes of seismicity comparable to the long-term Dobrá Voda aftershock sequence. Seismicity patterns, however, include short-term Omori-type aftershocks following moderate earthquakes such as the 2000 Ebreichsdorf earthquake (M=4.8). The segment covering the SW tip of the VBTFS revealed a 200 years long gradual decrease of the largest observed magnitudes starting with the 1794 Leoben (M=4.7) earthquake. The 1794 event is the oldest earthquake listed in the catalogue for the region under consideration. It therefore remains open if the recorded decay of seismicity results from the 1794 event, or a stronger earthquake before that time. The latter is corroborated by the low magnitude of the 1794 earthquake which would typically not be considered to cause long aftershock sequences.
GR a- and b-values, calculated for the individual segments, vary significantly along the VBTFS. Values range from 0.47 to 0.86 (b-values) and 0.81 to 2.54 (a-values), respectively. Data show a significant positive correlation of a- and b-values and a coincidence of the lowest b-values with fault segments with large seismic slip deficits and very low seismicity in the last approximately 300 years. These parts of the VBTFS were previously interpreted as “locked” fault segments, which have a significant potential to release future strong earthquakes, in spite of the fact that historical and instrumentally recorded seismicity is very low. We find this interpretation corroborated by the low b-values that suggest high differential stresses for these fault segments.
The Bohemian Massif is the relic of a major Paleozoic mountain range that is known to have exhumed and its surface levelled in the Permian, but its Neogene landscape evolution is largely unconstrained. The landscape is characterized by rolling hills and extended planation surfaces above an elevation of about 500 m. However, at lower elevations deeply incised gorges confined by steep hillslopes are abundant and contrast impressively with the low relief landscapes above. Rivers with a bimodal morphology (i.e. steep at lower elevations and gentle at higher elevations) drain either to the north into the Vltava (Moldau) River or to the south into the Danube River. Hence, a continental drainage divide runs through the Bohemian Massif. Here, we quantify spatial characteristics of the Bohemian Massif landforms by computing landscape metrics like steepness index or geophysical relief derived from digital elevation models. From this we infer temporal change of the landscape in the past and predict them for the future evolution of the region.
We show that the landscape is characterized by out-of-equilibrium river profiles with knickpoints abundantly at elevations between 450 m and 550 m separating steep channel segments at lower elevations from less steep channels at higher elevations. Hypsometric maxima at or close above knickpoint elevations, along with high and low values in geophysical relief as indicator for the degree of fluvial landscape dissection downstream and upstream of major knickpoints, support the idea of landscape bimodality. Furthermore, we find a distinct drainage divide asymmetry, which causes the reorganization of the drainage network of the region. Across-divide gradients in channel steepness predict the northward migration of the Danube-Vltava drainage divide including growth and shrinkage of tributary catchments, thus controlling changes in the Central European drainage pattern.
All aspects suggest that the region experienced relief rejuvenation during the last few million years. We suggest that this relief rejuvenation is related to the inversion of the Molasse basin with a long wavelength rock uplift pattern and low uplift rates. Vertical motion of crustal blocks at discrete faults may locally affect the uplift pattern. However, the contrasting bedrock properties between the sedimentary cover (Molasse sediments) and the crystalline basement (Bohemian Massif) cause substantial differences in erosion rate and are thus the superior control on the topographic variations of the entire region.
We have documented quarries in Miocene limestone in the Vienna Basin (Austria), Hundsheim Mountains, Leitha Mountains and Rust Hills in high-resolution airborne laser scanning data and orthophotos aiming for a diachronic quarry inventory since the Roman period. The study region was divided into 6 quarry regions and the quarries of the whole study area as well as each separate region were analyzed concerning different rock types, mean, minimum and maximum quarry area and development in the different maps. Age information have been sought from historical maps, historical photography and paintings as well as quarry face graffiti. In total, 658 quarries, possible quarries and shallow quarries have been outlined in the detailed digital terrain models, which were compared with 453 quarries indicated in four generations of historical maps between the years 1754 to 1872. The numbers of quarries are generally low in the Walter map (1754–1756), the First Military Survey (1773–1785) and Second Military Survey (1809–1846) but increase tremendously in the maps of the Third Military Survey (1872–1873).
Most old quarries were quarried also in subsequent periods, commonly destroying virtually all pre-existing traces. According to our results two types of quarries represent highly interesting targets for more detailed studies in the search for Roman quarries: (i) areas in historical maps with suspicious uneven terrain, which have never been outlined as quarries and areas that have been mapped as “old quarries” – especially in the Third Military Survey; examples represent areas northwest and west of Pfaffenberg in Bad Deutsch-Altenburg (Lower Austria), “Gruibert” in Winden am See (Burgenland) and “Hoher Berg” in Stotzing (Burgenland); (ii) Shallow quarries, which neither appear in historical maps nor in the mining archive of the Geological Survey of Austria like the one from the saddle between Pfaffenberg and Hundsheimer Berg.
The Vienna Basin Transfer Fault System (VBTFS) is the most active fault system in the region between the Eastern Alps, the western Carpathians and the Pannonian Basin. The spatial and temporal distribution of earthquakes along the fault system shows a heterogeneous pattern including a long-time decay of seismicity at the northern part of the VBTFS, which was interpreted to result from a long aftershock sequence subsequent to the 1906 Dobrá Voda earthquake (M=5.7). In this paper we investigate if other segments of the VBTFS display similar long-term declines of seismicity that might indicate long aftershock sequences following strong, yet unrecorded, earthquakes in historical times.
In order to analyse the distribution of seismicity, the VBTFS is divided into arbitrary segments of about 50 km length each. The segments are chosen to overlap each other to avoid missing information from neighbouring segments due to arbitrarily selected segment boundaries. For each segment we analyse the temporal evolution of seismicity and calculate the parameters of the corresponding Gutenberg-Richter (GR) relation.
The temporal seismicity patterns revealed from the segments covering the Dobrá Voda area confirm the protracted aftershock sequence following the 1906 earthquake. All but one of the other segments do not show temporal changes of seismicity comparable to the long-term Dobrá Voda aftershock sequence. Seismicity patterns, however, include short-term Omori-type aftershocks following moderate earthquakes such as the 2000 Ebreichsdorf earthquake (M=4.8). The segment covering the SW tip of the VBTFS revealed a 200 years long gradual decrease of the largest observed magnitudes starting with the 1794 Leoben (M=4.7) earthquake. The 1794 event is the oldest earthquake listed in the catalogue for the region under consideration. It therefore remains open if the recorded decay of seismicity results from the 1794 event, or a stronger earthquake before that time. The latter is corroborated by the low magnitude of the 1794 earthquake which would typically not be considered to cause long aftershock sequences.
GR a- and b-values, calculated for the individual segments, vary significantly along the VBTFS. Values range from 0.47 to 0.86 (b-values) and 0.81 to 2.54 (a-values), respectively. Data show a significant positive correlation of a- and b-values and a coincidence of the lowest b-values with fault segments with large seismic slip deficits and very low seismicity in the last approximately 300 years. These parts of the VBTFS were previously interpreted as “locked” fault segments, which have a significant potential to release future strong earthquakes, in spite of the fact that historical and instrumentally recorded seismicity is very low. We find this interpretation corroborated by the low b-values that suggest high differential stresses for these fault segments.
The Bohemian Massif is the relic of a major Paleozoic mountain range that is known to have exhumed and its surface levelled in the Permian, but its Neogene landscape evolution is largely unconstrained. The landscape is characterized by rolling hills and extended planation surfaces above an elevation of about 500 m. However, at lower elevations deeply incised gorges confined by steep hillslopes are abundant and contrast impressively with the low relief landscapes above. Rivers with a bimodal morphology (i.e. steep at lower elevations and gentle at higher elevations) drain either to the north into the Vltava (Moldau) River or to the south into the Danube River. Hence, a continental drainage divide runs through the Bohemian Massif. Here, we quantify spatial characteristics of the Bohemian Massif landforms by computing landscape metrics like steepness index or geophysical relief derived from digital elevation models. From this we infer temporal change of the landscape in the past and predict them for the future evolution of the region.
We show that the landscape is characterized by out-of-equilibrium river profiles with knickpoints abundantly at elevations between 450 m and 550 m separating steep channel segments at lower elevations from less steep channels at higher elevations. Hypsometric maxima at or close above knickpoint elevations, along with high and low values in geophysical relief as indicator for the degree of fluvial landscape dissection downstream and upstream of major knickpoints, support the idea of landscape bimodality. Furthermore, we find a distinct drainage divide asymmetry, which causes the reorganization of the drainage network of the region. Across-divide gradients in channel steepness predict the northward migration of the Danube-Vltava drainage divide including growth and shrinkage of tributary catchments, thus controlling changes in the Central European drainage pattern.
All aspects suggest that the region experienced relief rejuvenation during the last few million years. We suggest that this relief rejuvenation is related to the inversion of the Molasse basin with a long wavelength rock uplift pattern and low uplift rates. Vertical motion of crustal blocks at discrete faults may locally affect the uplift pattern. However, the contrasting bedrock properties between the sedimentary cover (Molasse sediments) and the crystalline basement (Bohemian Massif) cause substantial differences in erosion rate and are thus the superior control on the topographic variations of the entire region.
We have documented quarries in Miocene limestone in the Vienna Basin (Austria), Hundsheim Mountains, Leitha Mountains and Rust Hills in high-resolution airborne laser scanning data and orthophotos aiming for a diachronic quarry inventory since the Roman period. The study region was divided into 6 quarry regions and the quarries of the whole study area as well as each separate region were analyzed concerning different rock types, mean, minimum and maximum quarry area and development in the different maps. Age information have been sought from historical maps, historical photography and paintings as well as quarry face graffiti. In total, 658 quarries, possible quarries and shallow quarries have been outlined in the detailed digital terrain models, which were compared with 453 quarries indicated in four generations of historical maps between the years 1754 to 1872. The numbers of quarries are generally low in the Walter map (1754–1756), the First Military Survey (1773–1785) and Second Military Survey (1809–1846) but increase tremendously in the maps of the Third Military Survey (1872–1873).
Most old quarries were quarried also in subsequent periods, commonly destroying virtually all pre-existing traces. According to our results two types of quarries represent highly interesting targets for more detailed studies in the search for Roman quarries: (i) areas in historical maps with suspicious uneven terrain, which have never been outlined as quarries and areas that have been mapped as “old quarries” – especially in the Third Military Survey; examples represent areas northwest and west of Pfaffenberg in Bad Deutsch-Altenburg (Lower Austria), “Gruibert” in Winden am See (Burgenland) and “Hoher Berg” in Stotzing (Burgenland); (ii) Shallow quarries, which neither appear in historical maps nor in the mining archive of the Geological Survey of Austria like the one from the saddle between Pfaffenberg and Hundsheimer Berg.