We combine geoarchaeological investigations with high-resolution airborne laser scanning (ALS) topographic and airborne laser bathymetric (ALB) measurements to reassess the topography of the Roman city of Apsorus (modern Osor, northeastern Adriatic Sea, Croatia), which has generally been interpreted as important nodal point of Roman maritime traffic. Apsorus is located at the isthmus connecting Cres and Lošinj islands, which is 90 m wide at the narrowest part and dissected by a canal of supposed Roman age. A conspicuous low-lying wetland north of the city has been suggested to be a former sea passage and harbour area. Geoarchaeological coring, sedimentological analysis and radiocarbon dating suggest that this depression was already silted up with terrestrial sediments some 6,000 years ago and, especially in combination with the lower sea-level at that time, could not have been a Roman harbour. The combination of the ALS/ALB topographic data with lower sea-levels reconstructed for the Roman period challenges the traditional view which places ancient Osor on a small island and allows for new interpretations of the accessibility of Osor by sea.
The Upper Triassic (Norian–Rhaetian) Nayband Formation is situated at the southwestern margin of Central East Iranian Microcontinent and records Eo-Cimmerian events. The formation is composed of mixed carbonate-siliciclastic deposits. This study presents information on the tectonic reconstruction and palaeoclimate of the southwestern margin of Central East Iranian Microcontinent during the Late Triassic. Petrography and modal analyses of sandstones show a variety of quartz-rich petrofacies including subarkose, lithic arkose, sublitharenite, feldspathic litharenite and litharenite. The combined modal analysis and geochemical results of major and trace elements of the sandstone samples represents mixed sedimentary, intermediate, felsic igneous rocks and moderate- to high-grade metamorphic provenance areas. The major elements and modal analyses of the Nayband Formation sandstone samples suggest an active continental margin tec-tonic settings. The palaeoclimatic conditions were sub-humid to humid with relatively low to moderate weathering in the source area which is in agreement with the palaeogeography and palaeotectonic history of southwestern margin of Central East Iranian Microcontinent during the Late Triassic.
Monitoring temporal variations of 18O and 2H isotopes in precipitation, groundwater and surface water was performed in the region of Kakheti (East Georgia). Data were collected from three meteorological stations at altitudes between 400 - 1,100 m a.s.l., from two shallow and one deep hydrogeological boreholes, and from two surface water monitoring stations (Alazani River and Patmasuri karstic stream). 18O values in precipitation show an annual variation between -22 ‰ and +1 ‰ and a distinct altitude effect. A clear correlation exists between the seasonal isotope composition of precipitation, shallow groundwater and surface water. A five-fold amplitude dampening and a delay of 10-15 days was observed. The data show that precipitation in the Caucasus Mountains to the North infiltrates into the Upper Jurassic - Lower Cretaceous karstic aquifer and travels to the Alazani valley towards south-east. The isotopic signature of winter precipitation is reflected in stream water as well as in shallow groundwater isotope data of groundwater in a 2,000-m-deep hydrogeological borehole at Heretiskari show a distinctly different character with δ18O ranging between -2.8 ‰ to -2.2 ‰ and a deuterium excess of -25 ‰.
The Leoganger Steinberge are a heavily karstified massif largely composed of Dachstein dolomite and limestone hosting the deepest through-trip cave in the world, Lamprechtsofen, whose frontal parts are developed as a show cave. Many parts of this 60 km-long and 1724 m-deep system are hydrologically active. 1.5 km behind the lower cave entrance Grüntopf stream and Kneippklamm stream merge to form the main cave stream. Another underground stream, Stainerhallen stream, flows through the eponymous hall of the show cave. Since 2007 water temperature, electrical conductivity and water level have been monitored in the Grüntopf and Kneippklamm stream. Water temperature and water level in the Stainerhallen and main cave stream have been measured since 2016.
The long-term dataset (2013–2017) shows that the water temperature of the cave streams (Grüntopf stream: 3.7–5.2°C; Kneippklamm stream: 5.1–5.9°C) is largely invariant, but the electrical conductivity varies strongly (Grüntopf stream: 107–210 µS/cm; Kneippklamm stream: 131–248 µS/cm) in response to snowmelt and precipitation events. The event water of the Kneippklamm stream is characterized by a low electrical conductivity and is then followed by slightly warmer and higher mineralized water derived from the phreatic zone. This dual flow pattern also explains the asymmetrical changes of the water level during snowmelt: the fast event water flows directly through vadose pathways to the measurement site, whereas the hydraulic (phreatic) response is delayed. The Grüntopf stream reacts to precipitation and snowmelt events by changes in the karst-water table, which can be explained by a piston flow-model. The Kneippklamm stream reveals evidence of a lifter system.
The altitude of the catchments was calculated using δ18O values of water samples from the underground streams and from surface precipitation. The Grüntopf stream shows the highest mean catchment (2280 m a.s.l.), which is in agreement with its daily fluctuations of the water level until August caused by long-lasting snowmelt. The Stainerhallen stream has the lowest catchment (average 1400 m a.s.l.). The catchments of the other two streams are at intermediate elevations (1770–1920 m a.s.l.). The integration of the catchment analyses and observations from tracer tests conducted in the 1970s showed that the latter reflected only one aspect of the karst water regime in this massif. During times of high recharge the water level rises, new flow paths are activated and the karst watershed shifts.
We present the results of a field study in the Karwendel mountains in the western Northern Calcareous Alps, where we analysed the boundary between two major thrust sheets in detail in a key outcrop where nappe tectonics had been recognized already at the beginning of the 20th century. We use the macroscopic structural record of thrust sheet transport in the footwall and hanging wall of this boundary, such as folds, foliation and faults. In the footwall, competent stratigraphic units tend to preserve a full record of deformation while incompetent units get pervasively overprinted and only document the youngest deformation.
Transport across the thrust persisted throughout the deformation history of the Northern Calcareous Alps from the late Early Cretaceous to the Miocene. As a consequence of transtensive, S-block down strike-slip tectonics, postdating folding of the major thrust, new out-of-sequence thrusts formed that climbed across the step, and ultimately placed units belonging to the footwall of the initial thrust onto its hanging wall.
One of these out-of-sequence thrusts had been used to delimit the uppermost large thrust sheet (Inntal thrust sheet) of the western Northern Calcareous against the next, tectonically deeper, (Lechtal) thrust sheet. Based on the structural geometry of the folded thrust and the age of the youngest sediments below the thrust, we redefine the thrust sheets, and name the combined former Inntal- and part of the Lechtal thrust sheet as the new Karwendel thrust sheet and the former Allgäu- and part of the Lechtal thrust sheet as the new Tannheim thrust sheet.
We combine geoarchaeological investigations with high-resolution airborne laser scanning (ALS) topographic and airborne laser bathymetric (ALB) measurements to reassess the topography of the Roman city of Apsorus (modern Osor, northeastern Adriatic Sea, Croatia), which has generally been interpreted as important nodal point of Roman maritime traffic. Apsorus is located at the isthmus connecting Cres and Lošinj islands, which is 90 m wide at the narrowest part and dissected by a canal of supposed Roman age. A conspicuous low-lying wetland north of the city has been suggested to be a former sea passage and harbour area. Geoarchaeological coring, sedimentological analysis and radiocarbon dating suggest that this depression was already silted up with terrestrial sediments some 6,000 years ago and, especially in combination with the lower sea-level at that time, could not have been a Roman harbour. The combination of the ALS/ALB topographic data with lower sea-levels reconstructed for the Roman period challenges the traditional view which places ancient Osor on a small island and allows for new interpretations of the accessibility of Osor by sea.
The Upper Triassic (Norian–Rhaetian) Nayband Formation is situated at the southwestern margin of Central East Iranian Microcontinent and records Eo-Cimmerian events. The formation is composed of mixed carbonate-siliciclastic deposits. This study presents information on the tectonic reconstruction and palaeoclimate of the southwestern margin of Central East Iranian Microcontinent during the Late Triassic. Petrography and modal analyses of sandstones show a variety of quartz-rich petrofacies including subarkose, lithic arkose, sublitharenite, feldspathic litharenite and litharenite. The combined modal analysis and geochemical results of major and trace elements of the sandstone samples represents mixed sedimentary, intermediate, felsic igneous rocks and moderate- to high-grade metamorphic provenance areas. The major elements and modal analyses of the Nayband Formation sandstone samples suggest an active continental margin tec-tonic settings. The palaeoclimatic conditions were sub-humid to humid with relatively low to moderate weathering in the source area which is in agreement with the palaeogeography and palaeotectonic history of southwestern margin of Central East Iranian Microcontinent during the Late Triassic.
Monitoring temporal variations of 18O and 2H isotopes in precipitation, groundwater and surface water was performed in the region of Kakheti (East Georgia). Data were collected from three meteorological stations at altitudes between 400 - 1,100 m a.s.l., from two shallow and one deep hydrogeological boreholes, and from two surface water monitoring stations (Alazani River and Patmasuri karstic stream). 18O values in precipitation show an annual variation between -22 ‰ and +1 ‰ and a distinct altitude effect. A clear correlation exists between the seasonal isotope composition of precipitation, shallow groundwater and surface water. A five-fold amplitude dampening and a delay of 10-15 days was observed. The data show that precipitation in the Caucasus Mountains to the North infiltrates into the Upper Jurassic - Lower Cretaceous karstic aquifer and travels to the Alazani valley towards south-east. The isotopic signature of winter precipitation is reflected in stream water as well as in shallow groundwater isotope data of groundwater in a 2,000-m-deep hydrogeological borehole at Heretiskari show a distinctly different character with δ18O ranging between -2.8 ‰ to -2.2 ‰ and a deuterium excess of -25 ‰.
The Leoganger Steinberge are a heavily karstified massif largely composed of Dachstein dolomite and limestone hosting the deepest through-trip cave in the world, Lamprechtsofen, whose frontal parts are developed as a show cave. Many parts of this 60 km-long and 1724 m-deep system are hydrologically active. 1.5 km behind the lower cave entrance Grüntopf stream and Kneippklamm stream merge to form the main cave stream. Another underground stream, Stainerhallen stream, flows through the eponymous hall of the show cave. Since 2007 water temperature, electrical conductivity and water level have been monitored in the Grüntopf and Kneippklamm stream. Water temperature and water level in the Stainerhallen and main cave stream have been measured since 2016.
The long-term dataset (2013–2017) shows that the water temperature of the cave streams (Grüntopf stream: 3.7–5.2°C; Kneippklamm stream: 5.1–5.9°C) is largely invariant, but the electrical conductivity varies strongly (Grüntopf stream: 107–210 µS/cm; Kneippklamm stream: 131–248 µS/cm) in response to snowmelt and precipitation events. The event water of the Kneippklamm stream is characterized by a low electrical conductivity and is then followed by slightly warmer and higher mineralized water derived from the phreatic zone. This dual flow pattern also explains the asymmetrical changes of the water level during snowmelt: the fast event water flows directly through vadose pathways to the measurement site, whereas the hydraulic (phreatic) response is delayed. The Grüntopf stream reacts to precipitation and snowmelt events by changes in the karst-water table, which can be explained by a piston flow-model. The Kneippklamm stream reveals evidence of a lifter system.
The altitude of the catchments was calculated using δ18O values of water samples from the underground streams and from surface precipitation. The Grüntopf stream shows the highest mean catchment (2280 m a.s.l.), which is in agreement with its daily fluctuations of the water level until August caused by long-lasting snowmelt. The Stainerhallen stream has the lowest catchment (average 1400 m a.s.l.). The catchments of the other two streams are at intermediate elevations (1770–1920 m a.s.l.). The integration of the catchment analyses and observations from tracer tests conducted in the 1970s showed that the latter reflected only one aspect of the karst water regime in this massif. During times of high recharge the water level rises, new flow paths are activated and the karst watershed shifts.
We present the results of a field study in the Karwendel mountains in the western Northern Calcareous Alps, where we analysed the boundary between two major thrust sheets in detail in a key outcrop where nappe tectonics had been recognized already at the beginning of the 20th century. We use the macroscopic structural record of thrust sheet transport in the footwall and hanging wall of this boundary, such as folds, foliation and faults. In the footwall, competent stratigraphic units tend to preserve a full record of deformation while incompetent units get pervasively overprinted and only document the youngest deformation.
Transport across the thrust persisted throughout the deformation history of the Northern Calcareous Alps from the late Early Cretaceous to the Miocene. As a consequence of transtensive, S-block down strike-slip tectonics, postdating folding of the major thrust, new out-of-sequence thrusts formed that climbed across the step, and ultimately placed units belonging to the footwall of the initial thrust onto its hanging wall.
One of these out-of-sequence thrusts had been used to delimit the uppermost large thrust sheet (Inntal thrust sheet) of the western Northern Calcareous against the next, tectonically deeper, (Lechtal) thrust sheet. Based on the structural geometry of the folded thrust and the age of the youngest sediments below the thrust, we redefine the thrust sheets, and name the combined former Inntal- and part of the Lechtal thrust sheet as the new Karwendel thrust sheet and the former Allgäu- and part of the Lechtal thrust sheet as the new Tannheim thrust sheet.