In this study, we present chemical denudation rates derived from measuring the dissolved load of an alpine catchment located in Salzburg, Austria. The catchment has a drainage area of about 7 km2 and is predominantly covered by limestone- rich glacial deposits and carbonate rocks that are characteristic of the Northern Calcareous Alps. To obtain catchment-wide chemical denudation rates, we integrated discharge time series that were measured by a permanent water gauge of the Austrian Service for Torrent and Avalanche Control to compute the total discharge of the investigated catchment over a period of one year. During the same period, samples were taken during several campaigns to consider variations of the dissolved load. Samples were collected at high and low runoff conditions to study the effect of precipitation and at different locations along the tributaries to account for lithological variations of the river beds on the dissolved load. For the investigation period of one year, 2.97 ×106 m3 of discharge was measured at the catchment outlet. The summed cation-concentration varies between about 85 mg/l for dry-conditions and 75 mg/l for rainy-conditions at the gauge and consists predominantly of Ca2+and Mg2+ cations. Based on the total discharge of the river integrated over a period of one year, and the average dissolved load determined from water samples, we obtained a chemical denudation rate of 0.094 mm/a. The results imply that chemical denudation is a significant driver for redistributing mass in carbonate-dominated catchments and might be the dominant erosional process in such settings.
The mineralogy of Devonian to Carboniferous shales from the Ukrainian Dniepr-Donets Basin (DDB) was investigated during this study. These shales show a high compositional variability in vertical and lateral directions. Furthermore, stratigraphic trends were found to be controlled both by climatic factors as well as by changing detrital input from the hinterland. High kaolinite contents and predominance of kaolinite over illite in the Tournaisian and partly in the lower Visean units are likely a result of intense chemical weathering related to the Hangenberg climatic event at the Devonian/ Tournaisian boundary. In contrast, abnormally high kaolinite contents in upper Visean and Serpukhovian samples at the basin center might be caused by different transport properties of kaolinite and illite, leading to selective concentration of small detrital kaolinite particles, which are often in the sub-micrometer range according to scanning electron microscopy observations. K/Al elemental ratios correlate well with illite/kaolinite ratios for samples in which significant amounts of both clay minerals are present, which enables a pre-evaluation of the relative kaolinite content based on bulk geochemical data. As kaolinite is suggested to decrease the fraccability of shales and to have a great influence on their wetting behaviour, this is useful information for explorational purposes. Higher feldspar contents in Devonian and Tournaisian samples, especially along the NE basin margin and in the shallow NW part of the DDB, are likely related to increased detrital input from magmatic precursors (e.g. in the Voronezh Massif ) during (and shortly after) the active rift stage of the DDB. In general, feldspar contents are higher in proximal positions compared to the basin center, which is likely a result of shorter transport distances of the comparably large feldspar grains. Finally, the presence of expandable clay minerals down to depths of 6 km and the fact that no thermal maturity trend is visible down to these depths, proves, that a low post-depositional heat flow was present in the DDB. This is in good agreement with vitrinite reflectance measurements and thermal modelling results from previous studies, which suggest a low Mesozoic heat flow.
Sarmatian and Pannonian cores, drilled at the western margin of the Vienna Basin in the City of Vienna, reveal a complex succession of marine and lacustrine depositional environments during the middle to late Miocene transition. Two Sarmatian and two Pannonian transgressive-regressive sequences were studied in detail. Identical successions of benthic faunal assemblages and similar patterns in magnetic susceptibility logs characterise these sequences. This allows a correlation of the boreholes over a distance of ~3.5 km across one of the major marginal faults of the Vienna Basin. Biostratigraphic data, combined with rough estimates of sedimentation rates, reveal large gaps between these sequences, suggesting that only major transgressions reached this marginal area. In particular, during the Sarmatian-Pannonian transition, the basin margin completely emerged and turned into a terrestrial setting for at least 600 ka.
Using 12-year-long series of data (2001-2012) from geomagnetic observatories and repeat stations in Austria and its neighboring countries, a regional spatial-temporal (ST) model is developed based on the polynomial expansion consisting of latitude, longitude, and time of the geomagnetic field components and total magnetic field F. Additionally, we have used three different global models (CHAOS-5, POMME-9, and EMM2015), which are built on spherical harmonics up to a maximum degree Lmax and give the core field and crustal field separately. The normal field provided by the ST model and its “model bias”, which comprise the residuals of the differences between measured and predicted values, are calculated and the respective maps are shown. The residuals are considered an estimate of the local crustal field. In the case of global models, we have applied for each of these three methods to calculate the “model bias”: residuals of the differences between observed values and predicted values of the model, residuals of the differences between observed values and core field values of the model, and the average bias for the period 2001-2012. The normal field of the region of Austria provided by each global model is also calculated. Generally, the regional and global models yield relatively similar crustal fields for the Austrian region, especially when the first method is used. The normal fields calculated by them are in good agreement with each other. Each of the global models directly provides the crustal field, and they are compared with the aeromagnetic data provided by aeromagnetic surveys over the Austrian region. The ST model is in better agreement with aeromagnetic data. We have also analyzed the secular variation over the region, which is calculated from the rate of change of normal field given by the ST and global models.
The Qorveh-Takab travertines, which are connected to thermal springs, are situated in the northwest of the Sanandaj- Sirjan metamorphic zone in Iran. In this study, the travertines were investigated applying petrography, mineralogy and isotope geochemistry. Oxygen and carbon isotope geochemistry, petrography, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were used to determine the source of the CO2 and the lithofacies and to classify the travertines. Isotope studies, morphological and mineralogical observations and distribution of travertines revealed that the travertines of the Qorveh-Takab could be of thermal water origin and, therefore, belong to the thermogene travertine category. These travertines are usually massive with mound-type morphology and are essentially found in regions with recent volcanic or high tectonic activity. The measured δ13C values of the travertines indicate that the δ13C of the CO2 released from the water during travertine deposition, while the source of the CO2 in the water springs seems to have been of crustal magmatic affinity. These travertines are divided into two lithofacies: (1) crystalline crust travertine and (2) pebbly (phytoclastic travertine with pebble- size extraclasts) travertine. δ18O and δ13C values of travertines are -0.6 to -11.9 (‰VPDB) and +6.08 to +9.84 (‰VPDB), respectively. A probable reason for the heavy carbon isotope content observed in these deposits is the presence of algae microorganisms, which was verified by SEM images. Fissure ridges, fluvial crusts with oncoids, and mound morphological features are observed in the study area. Based on the petrographic and SEM criteria, Qorveh-Takab travertines are classified into four groups: (1) compacted, (2) laminated, (3) iron-rich spring deposit and (4) aragonite-bearing travertines. Stable isotope compositions of Turkish travertines are largely similar to the travertines in the study area.
A detailed study of OMV wells throughout the Lower Austrian Molasse Basin demonstrates the existence of a distinct and synchronous upper Ottnangian (lower Miocene) stratigraphic signal, the Calcite Minimum Interval (CMI). It corresponds to the depositional phase of the Rzehakia Lake System. This signal is interpreted to be of chronostratigraphic importance as an expression of palaeoclimate and related sea-level change. It is represented by the brackish Traisen Formation, which crops out south of the Danube. The Traisen Formation correlates with sands and shales in OMV wells to the north, termed Wildendürnbach Formation. However, the CMI underlies a marine unit, the so-called “Oncophora Beds” (also known as Rzehakia Beds) as reported from OMV wells in the north at the border to the Czech Republic. We demonstrate that these former “Oncophora Beds” are younger, i.e. of Karpatian age, than originally assumed. Therefore, these deposits cannot be correlated to the late Ottnangian Traisen Formation. This may solve the problem of contradicting interpretations concerning the depositional environment of both units, which were correlated to each other in the past. As no Rzehakia bivalves (formerly Oncophora) are described from these former “Oncophora Beds”, we recommend to avoid using the term for these turbiditic sands. Instead, we attribute these deposits to the fully marine Karpatian Laa Formation. These new findings, which are in accordance with published data from the Czech Republic, indicate two (in time and space) independent sedimentary systems and sand deposition centres for the Traisen Formation and the massive sands attributed as “Oncophora Beds” around Wildendürnbach. A late Ottnangian system in the south delivered the material of the Traisen Formation from the Alps and a Karpatian system delivered the clastic material of the massive sands of the Laa Formation from the east.
Published Online: 06 Sep 2018 Page range: 92 - 110
Abstract
Abstract
Lower Jurassic ammonites were collected from deep-water limestones of the Tannscharten section, southwest of Reichraming (Northern Calcareous Alps, Upper Austria). The outcrop provides a rich Upper Sinemurian (Lower Jurassic) ammonite fauna of the Allgäu Formation. The area is situated in the westernmost part of the Schneeberg Syncline in the north of the Reichraming Nappe (High Bajuvaric Unit). The ammonite fauna consists of seven different genera, each apparently represented by 1-2 species. Echioceratids are the most frequent components (Echioceras, Leptechioceras, Paltechioceras), followed by the phylloceratids (Juraphyllites, Partschiceras) and oxynoticeratids (Gleviceras, Paroxynoticeras). Juraphyllites libertus, Partschiceras striatocostatum, Gleviceras paniceum, Echioceras quenstedti, Echioceras raricostatoides, Paltechioceras boehmi, Leptechioceras meigeni, Leptechioceras macdonnelli and Paltechioceras oosteri are new for the Schneeberg Syncline and allow for the first time a detailed biostratigraphy of the Echioceras raricostatum zone. The assemblage is correlated with other faunae from Austria, Germany, United Kingdom, France, Switzerland and Romania. The cephalopod fauna consists of a mix of elements from the Northwest European Province and the Mediterranean Province. The detailed biostratigraphy based on ammonites is presented here.
Published Online: 06 Sep 2018 Page range: 111 - 134
Abstract
Abstract
Glacigenic perialpine lakes can constitute continuous post-last glacial maximum (LGM) geological archives which allow reconstruction of both lake-specific sedimentological processes and the paleoenvironmental setting of lakes. Lake Mondsee is one among several perialpine lakes in the Salzkammergut, Upper Austria, and has been previously studied in terms of paleoclimate, paleolimnology and (paleo)ecology. However, the full extent and environment of Late Glacial to Holocene sediment deposition had remained unknown, and it was not clear whether previously studied core sections were fully representative of 3D sediment accumulation patterns. In this study, the sedimentary infill of Lake Mondsee was examined via high-resolution seismic reflection survey over a 57-km extent (3.5 kHz pinger source) and a sediment core extracted from the deepest part of the lake, with a continuous length of 13.76 m. In the northern basin, seismic penetration is strongly limited in most areas because of abundant shallow gas (causing acoustic blanking). In the deeper areas, the acoustic signal reaches depths of up to 80 ms TWT (two-way travel time), representing a postglacial sedimentary sequence of at least 60-m thickness. Holocene deposits constitute only the uppermost 11.5 m of the sedimentary succession. Postglacial seismic stratigraphy of Lake Mondsee closely resembles those of well-studied French and Swiss perialpine lakes, with our data showing that most of Lake Mondsee’s sedimentary basin infill was deposited within a short time period (between 19,000 BP and 14,500 BP) after the Traun Glacier retreated from the Mondsee area, indicating an average sedimentation rate of about 1.4 cm/yr. Compared to other perialpine lakes, the seismic data from Lake Mondsee reveal little indication of mass movement activities during the Holocene. One exception, however, is rockfalls that originate from a steep cliff, the Kienbergwand, situated on the southern shore of Lake Mondsee, where, in the adjacent part of the lake, seismic profiles show mass transport deposits (MTDs), which extend approximately 450 m from the shore and are mappable over an area of about 45,300 m2. Sediment cores targeting the MTDs show two separate rockfall events. The older event consists of clast-supported angular dolomitic gravels and sands, showing high amounts of fine fraction. The younger event exhibits dolomitic clasts of up to 1.5 cm in diameter, which is mixed within a lacustrine muddy matrix. Radiocarbon dating and correlations with varve-dated sediment cores hint at respective ages of AD 1484 ± 7 for Event 1 and AD 1639 ± 5 for Event 2. As our data show no evidence of larger-scale mass movements affecting Lake Mondsee and its surroundings, we infer that the current-day morphology of the Kienbergwand is the result of infrequent medium-scale rockfalls.
Published Online: 06 Sep 2018 Page range: 135 - 154
Abstract
Abstract
The current study presents a fully qualitative palynological investigation carried out on the Raha Formation encountered from three wells in the Bakr Oil Field of the Gulf of Suez, Egypt. Around 30 species of pteridophytic spores, 26 species of angiosperm pollen, 24 species of gymnosperm pollen and 27 species of dinoflagellate cysts have been recorded. However, achritarchs, microforaminiferal test linings and freshwater algae are impoverished and sparsely documented throughout the Raha Formation. Two palynozones have been identified based on some stratigraphically significant pollen and spores, arranged from youngest to oldest: (1) Palynozone I (Classopollis brasiliensis–Tricolpites sagax Assemblage Zone) of late Cenomanian age; (2) Palynozone II (Afropollis jardinus–Crybelosporites pannuceus Assemblage Zone) of early-middle Cenomanian age. The distribution and ecological affiliation of specific palynomorph species, as well as various palynofacies parameters, are interpreted. A shallow marine environment from supratidal to distal inner neritic under proximal suboxic–anoxic to dysoxic–anoxic shelf conditions is reconstructed. Palaeobiogeographically, the absence of elaters from the recovered taxa is interpreted in terms of minor floral variation. This may be attributed to climatic and/or an environment-controlled niche establishment, which possibly was shaped by the existence of a physical barrier hindering the distribution of such type of elaterate parent plants.
In this study, we present chemical denudation rates derived from measuring the dissolved load of an alpine catchment located in Salzburg, Austria. The catchment has a drainage area of about 7 km2 and is predominantly covered by limestone- rich glacial deposits and carbonate rocks that are characteristic of the Northern Calcareous Alps. To obtain catchment-wide chemical denudation rates, we integrated discharge time series that were measured by a permanent water gauge of the Austrian Service for Torrent and Avalanche Control to compute the total discharge of the investigated catchment over a period of one year. During the same period, samples were taken during several campaigns to consider variations of the dissolved load. Samples were collected at high and low runoff conditions to study the effect of precipitation and at different locations along the tributaries to account for lithological variations of the river beds on the dissolved load. For the investigation period of one year, 2.97 ×106 m3 of discharge was measured at the catchment outlet. The summed cation-concentration varies between about 85 mg/l for dry-conditions and 75 mg/l for rainy-conditions at the gauge and consists predominantly of Ca2+and Mg2+ cations. Based on the total discharge of the river integrated over a period of one year, and the average dissolved load determined from water samples, we obtained a chemical denudation rate of 0.094 mm/a. The results imply that chemical denudation is a significant driver for redistributing mass in carbonate-dominated catchments and might be the dominant erosional process in such settings.
The mineralogy of Devonian to Carboniferous shales from the Ukrainian Dniepr-Donets Basin (DDB) was investigated during this study. These shales show a high compositional variability in vertical and lateral directions. Furthermore, stratigraphic trends were found to be controlled both by climatic factors as well as by changing detrital input from the hinterland. High kaolinite contents and predominance of kaolinite over illite in the Tournaisian and partly in the lower Visean units are likely a result of intense chemical weathering related to the Hangenberg climatic event at the Devonian/ Tournaisian boundary. In contrast, abnormally high kaolinite contents in upper Visean and Serpukhovian samples at the basin center might be caused by different transport properties of kaolinite and illite, leading to selective concentration of small detrital kaolinite particles, which are often in the sub-micrometer range according to scanning electron microscopy observations. K/Al elemental ratios correlate well with illite/kaolinite ratios for samples in which significant amounts of both clay minerals are present, which enables a pre-evaluation of the relative kaolinite content based on bulk geochemical data. As kaolinite is suggested to decrease the fraccability of shales and to have a great influence on their wetting behaviour, this is useful information for explorational purposes. Higher feldspar contents in Devonian and Tournaisian samples, especially along the NE basin margin and in the shallow NW part of the DDB, are likely related to increased detrital input from magmatic precursors (e.g. in the Voronezh Massif ) during (and shortly after) the active rift stage of the DDB. In general, feldspar contents are higher in proximal positions compared to the basin center, which is likely a result of shorter transport distances of the comparably large feldspar grains. Finally, the presence of expandable clay minerals down to depths of 6 km and the fact that no thermal maturity trend is visible down to these depths, proves, that a low post-depositional heat flow was present in the DDB. This is in good agreement with vitrinite reflectance measurements and thermal modelling results from previous studies, which suggest a low Mesozoic heat flow.
Sarmatian and Pannonian cores, drilled at the western margin of the Vienna Basin in the City of Vienna, reveal a complex succession of marine and lacustrine depositional environments during the middle to late Miocene transition. Two Sarmatian and two Pannonian transgressive-regressive sequences were studied in detail. Identical successions of benthic faunal assemblages and similar patterns in magnetic susceptibility logs characterise these sequences. This allows a correlation of the boreholes over a distance of ~3.5 km across one of the major marginal faults of the Vienna Basin. Biostratigraphic data, combined with rough estimates of sedimentation rates, reveal large gaps between these sequences, suggesting that only major transgressions reached this marginal area. In particular, during the Sarmatian-Pannonian transition, the basin margin completely emerged and turned into a terrestrial setting for at least 600 ka.
Using 12-year-long series of data (2001-2012) from geomagnetic observatories and repeat stations in Austria and its neighboring countries, a regional spatial-temporal (ST) model is developed based on the polynomial expansion consisting of latitude, longitude, and time of the geomagnetic field components and total magnetic field F. Additionally, we have used three different global models (CHAOS-5, POMME-9, and EMM2015), which are built on spherical harmonics up to a maximum degree Lmax and give the core field and crustal field separately. The normal field provided by the ST model and its “model bias”, which comprise the residuals of the differences between measured and predicted values, are calculated and the respective maps are shown. The residuals are considered an estimate of the local crustal field. In the case of global models, we have applied for each of these three methods to calculate the “model bias”: residuals of the differences between observed values and predicted values of the model, residuals of the differences between observed values and core field values of the model, and the average bias for the period 2001-2012. The normal field of the region of Austria provided by each global model is also calculated. Generally, the regional and global models yield relatively similar crustal fields for the Austrian region, especially when the first method is used. The normal fields calculated by them are in good agreement with each other. Each of the global models directly provides the crustal field, and they are compared with the aeromagnetic data provided by aeromagnetic surveys over the Austrian region. The ST model is in better agreement with aeromagnetic data. We have also analyzed the secular variation over the region, which is calculated from the rate of change of normal field given by the ST and global models.
The Qorveh-Takab travertines, which are connected to thermal springs, are situated in the northwest of the Sanandaj- Sirjan metamorphic zone in Iran. In this study, the travertines were investigated applying petrography, mineralogy and isotope geochemistry. Oxygen and carbon isotope geochemistry, petrography, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were used to determine the source of the CO2 and the lithofacies and to classify the travertines. Isotope studies, morphological and mineralogical observations and distribution of travertines revealed that the travertines of the Qorveh-Takab could be of thermal water origin and, therefore, belong to the thermogene travertine category. These travertines are usually massive with mound-type morphology and are essentially found in regions with recent volcanic or high tectonic activity. The measured δ13C values of the travertines indicate that the δ13C of the CO2 released from the water during travertine deposition, while the source of the CO2 in the water springs seems to have been of crustal magmatic affinity. These travertines are divided into two lithofacies: (1) crystalline crust travertine and (2) pebbly (phytoclastic travertine with pebble- size extraclasts) travertine. δ18O and δ13C values of travertines are -0.6 to -11.9 (‰VPDB) and +6.08 to +9.84 (‰VPDB), respectively. A probable reason for the heavy carbon isotope content observed in these deposits is the presence of algae microorganisms, which was verified by SEM images. Fissure ridges, fluvial crusts with oncoids, and mound morphological features are observed in the study area. Based on the petrographic and SEM criteria, Qorveh-Takab travertines are classified into four groups: (1) compacted, (2) laminated, (3) iron-rich spring deposit and (4) aragonite-bearing travertines. Stable isotope compositions of Turkish travertines are largely similar to the travertines in the study area.
A detailed study of OMV wells throughout the Lower Austrian Molasse Basin demonstrates the existence of a distinct and synchronous upper Ottnangian (lower Miocene) stratigraphic signal, the Calcite Minimum Interval (CMI). It corresponds to the depositional phase of the Rzehakia Lake System. This signal is interpreted to be of chronostratigraphic importance as an expression of palaeoclimate and related sea-level change. It is represented by the brackish Traisen Formation, which crops out south of the Danube. The Traisen Formation correlates with sands and shales in OMV wells to the north, termed Wildendürnbach Formation. However, the CMI underlies a marine unit, the so-called “Oncophora Beds” (also known as Rzehakia Beds) as reported from OMV wells in the north at the border to the Czech Republic. We demonstrate that these former “Oncophora Beds” are younger, i.e. of Karpatian age, than originally assumed. Therefore, these deposits cannot be correlated to the late Ottnangian Traisen Formation. This may solve the problem of contradicting interpretations concerning the depositional environment of both units, which were correlated to each other in the past. As no Rzehakia bivalves (formerly Oncophora) are described from these former “Oncophora Beds”, we recommend to avoid using the term for these turbiditic sands. Instead, we attribute these deposits to the fully marine Karpatian Laa Formation. These new findings, which are in accordance with published data from the Czech Republic, indicate two (in time and space) independent sedimentary systems and sand deposition centres for the Traisen Formation and the massive sands attributed as “Oncophora Beds” around Wildendürnbach. A late Ottnangian system in the south delivered the material of the Traisen Formation from the Alps and a Karpatian system delivered the clastic material of the massive sands of the Laa Formation from the east.
Lower Jurassic ammonites were collected from deep-water limestones of the Tannscharten section, southwest of Reichraming (Northern Calcareous Alps, Upper Austria). The outcrop provides a rich Upper Sinemurian (Lower Jurassic) ammonite fauna of the Allgäu Formation. The area is situated in the westernmost part of the Schneeberg Syncline in the north of the Reichraming Nappe (High Bajuvaric Unit). The ammonite fauna consists of seven different genera, each apparently represented by 1-2 species. Echioceratids are the most frequent components (Echioceras, Leptechioceras, Paltechioceras), followed by the phylloceratids (Juraphyllites, Partschiceras) and oxynoticeratids (Gleviceras, Paroxynoticeras). Juraphyllites libertus, Partschiceras striatocostatum, Gleviceras paniceum, Echioceras quenstedti, Echioceras raricostatoides, Paltechioceras boehmi, Leptechioceras meigeni, Leptechioceras macdonnelli and Paltechioceras oosteri are new for the Schneeberg Syncline and allow for the first time a detailed biostratigraphy of the Echioceras raricostatum zone. The assemblage is correlated with other faunae from Austria, Germany, United Kingdom, France, Switzerland and Romania. The cephalopod fauna consists of a mix of elements from the Northwest European Province and the Mediterranean Province. The detailed biostratigraphy based on ammonites is presented here.
Glacigenic perialpine lakes can constitute continuous post-last glacial maximum (LGM) geological archives which allow reconstruction of both lake-specific sedimentological processes and the paleoenvironmental setting of lakes. Lake Mondsee is one among several perialpine lakes in the Salzkammergut, Upper Austria, and has been previously studied in terms of paleoclimate, paleolimnology and (paleo)ecology. However, the full extent and environment of Late Glacial to Holocene sediment deposition had remained unknown, and it was not clear whether previously studied core sections were fully representative of 3D sediment accumulation patterns. In this study, the sedimentary infill of Lake Mondsee was examined via high-resolution seismic reflection survey over a 57-km extent (3.5 kHz pinger source) and a sediment core extracted from the deepest part of the lake, with a continuous length of 13.76 m. In the northern basin, seismic penetration is strongly limited in most areas because of abundant shallow gas (causing acoustic blanking). In the deeper areas, the acoustic signal reaches depths of up to 80 ms TWT (two-way travel time), representing a postglacial sedimentary sequence of at least 60-m thickness. Holocene deposits constitute only the uppermost 11.5 m of the sedimentary succession. Postglacial seismic stratigraphy of Lake Mondsee closely resembles those of well-studied French and Swiss perialpine lakes, with our data showing that most of Lake Mondsee’s sedimentary basin infill was deposited within a short time period (between 19,000 BP and 14,500 BP) after the Traun Glacier retreated from the Mondsee area, indicating an average sedimentation rate of about 1.4 cm/yr. Compared to other perialpine lakes, the seismic data from Lake Mondsee reveal little indication of mass movement activities during the Holocene. One exception, however, is rockfalls that originate from a steep cliff, the Kienbergwand, situated on the southern shore of Lake Mondsee, where, in the adjacent part of the lake, seismic profiles show mass transport deposits (MTDs), which extend approximately 450 m from the shore and are mappable over an area of about 45,300 m2. Sediment cores targeting the MTDs show two separate rockfall events. The older event consists of clast-supported angular dolomitic gravels and sands, showing high amounts of fine fraction. The younger event exhibits dolomitic clasts of up to 1.5 cm in diameter, which is mixed within a lacustrine muddy matrix. Radiocarbon dating and correlations with varve-dated sediment cores hint at respective ages of AD 1484 ± 7 for Event 1 and AD 1639 ± 5 for Event 2. As our data show no evidence of larger-scale mass movements affecting Lake Mondsee and its surroundings, we infer that the current-day morphology of the Kienbergwand is the result of infrequent medium-scale rockfalls.
The current study presents a fully qualitative palynological investigation carried out on the Raha Formation encountered from three wells in the Bakr Oil Field of the Gulf of Suez, Egypt. Around 30 species of pteridophytic spores, 26 species of angiosperm pollen, 24 species of gymnosperm pollen and 27 species of dinoflagellate cysts have been recorded. However, achritarchs, microforaminiferal test linings and freshwater algae are impoverished and sparsely documented throughout the Raha Formation. Two palynozones have been identified based on some stratigraphically significant pollen and spores, arranged from youngest to oldest: (1) Palynozone I (Classopollis brasiliensis–Tricolpites sagax Assemblage Zone) of late Cenomanian age; (2) Palynozone II (Afropollis jardinus–Crybelosporites pannuceus Assemblage Zone) of early-middle Cenomanian age. The distribution and ecological affiliation of specific palynomorph species, as well as various palynofacies parameters, are interpreted. A shallow marine environment from supratidal to distal inner neritic under proximal suboxic–anoxic to dysoxic–anoxic shelf conditions is reconstructed. Palaeobiogeographically, the absence of elaters from the recovered taxa is interpreted in terms of minor floral variation. This may be attributed to climatic and/or an environment-controlled niche establishment, which possibly was shaped by the existence of a physical barrier hindering the distribution of such type of elaterate parent plants.