During more than a century since its original identification, the Gowganda Formation in Ontario (Canada) has gradually been reinterpreted from representing mainly subglacial tillites to secondary gravity flow and glaciomarine deposits. The main pieces of geological evidence advanced in favour of glaciation in recent articles are outsized clasts that have been interpreted as dropstones and patches of diamictites in a single small-sized area at Cobalt which is still interpreted as displaying subglacial basal tillites. The present research considers field evidence in the Gowganda Formation in the light of more recent work on gravity flows linked to tectonics. Detailed studies have demonstrated that the clasts which are interpreted to be dropstones rarely penetrate laminae and are commonly draped by sediments the appearance of which is similar to lonestones in gravity flows. The “subglacial area” at Cobalt displays evidence of tectonics and gravity flows, which can be traced from the underlying bedrock, and then further in the overlying sequence of diamictites and rhythmites. The sum of geological features displays appearances at odds with a primary glaciogenic origin, and there is no unequivocal evidence present of glaciation. The data indicate deposition by non-glaciogenic gravity flows, including cohesive debris flows for the more compact units, probably triggered by tectonic displacements.
Soft-sediment deformation structures play an important role in interpreting regional tectonics and basin evolution during slumping events. The Satpura Basin is interpreted as pull-apart with a monoclinal northerly palaeoslope throughout its evolution. The basin formed as a result of sinistral strike-slip faulting, induced by the ENE–WSW-trending Son-Narmada South fault in the north and the Tapti North fault in the south. We have analysed the slump folds within the basalmost Talchir Formation and related these to regional tectonics and palaeoslope changes in the Satpura Basin. The glaciofluvial strata of the Talchir Formation, exposed in the southern part of the Satpura Basin, record intricacies of folds created during slumping. Several fold styles can be distinguished, within alternations of competent sandstone and incompetent shale layers, some of which indicate buckling. Upright folds, resulting from pure shear, underwent rotation of their axial planes and fold axes during simple shear-dominated progressive deformation when the slump moved downslope. The soft-sediment deformation structures that we have studied show refolding patterns that closely resemble comparable folds known from lithified rocks. These layers with refolded structures are overlain by unde-formed sediments, which proves that they are the product of a single ongoing slumping process, rather than of successive deformation events. Our analysis of their fold axes and axial planes, together with fold vergences and thrust directions within the slumps, suggests a mean slumping direction towards the southwest. Analyses of slump folds and their relationship with regional tectonics have allowed us to reinterpret basin evolution history. The southwesterly trending palaeoslope of the basin suggest that the slope of the basin was not uniform throughout its evolution. At the opening, the oblique slip fault, which trended NE–SW, generated due to movement along the ENE–WSW basin bounding faults, was more active and triggered slumping event within the Talchir deposits in the basin. With progressive overlapping of the basin-bounding faults, the Satpura Basin gradually tilted towards the north.
Caves are rare in northeast Africa and, thus, deserve attention as potential geoheritage objects (geosites). Assessment of Djara Cave and its vicinity (Western Desert, Egypt) has permitted to document unique features, such as the cave itself as a peculiar subsurface landform, speleothems providing data for palaeoenvironmental reconstructions, rock art demonstrating elements of past landscapes, siliceous nodules weathered from Eocene limestones and a network of dry drainage channels indicative of wetter palaeoenvironments. These features are assigned to geomorphological, sedimentological and palaeogeographical types of geoheritage. Djara Cave and its vicinity are proposed as a geosite of national rank; it is vulnerable to anthropogenic stress and needs geoconservation measures and instalment of interpretative signs. This geosite is already popular among tourists, and can be used for further tourism development. More generally, the presence of caves in Egyptian desert areas makes possible the recognition of national speleological heritage that requires special country-level strategies of management.
The foraminiferal contents of the lower–middle Miocene succession exposed in three sections in north Nur Abad on the northwestern side of the High Zagros Thrust Belt were studied. Assemblages of larger foraminifera from these sections can be referred to Zone SBZ 25 (and the Miogypsina globulus and Miogypsina intermedia subzones), which correlates with the Burdigalian Stage. For the first time, planktonic foraminifera documented from the Nur Abad area document Lang-hian deposits in the High Zagros, the upper 20 metres of the upper Sayl Cheshmeh section being characterised by the occurrence of planktonic foraminifera such as Globigerina concinna (Reuss), Globigerina diplostoma (Reuss), Globigerinoides obliquus (Bolli), Orbulina bilobata (d’Orbigny) and O.universa (d’Orbigny). This association characterises the Orbulina suturalis Interval Zone.
Sediment accumulation is a process that is typical of all types of water reservoirs. The rate and pattern of such accumulation are related to processes taking place in catchments that produce the sediments and to those within reservoirs that determine the percentage of the inflowing load that is trapped and where it is deposited. To keep reservoirs in working order requires desilting and managing of such bottom sediments once they are removed. The choice of strategy for sediment management depends on chemical and physical properties which result from both natural and anthropogenic processes. To varying degrees, these sediments may be contaminated with chemical compounds, especially trace metals. Therefore, research is needed in order to assess the quality of sediments, which will allow to opt for the proper management strategy. Based on an analysis of the available literature, the possibility of using sediments from reservoirs has been determined, using quality criteria and in accordance with applicable law and regulations.
During more than a century since its original identification, the Gowganda Formation in Ontario (Canada) has gradually been reinterpreted from representing mainly subglacial tillites to secondary gravity flow and glaciomarine deposits. The main pieces of geological evidence advanced in favour of glaciation in recent articles are outsized clasts that have been interpreted as dropstones and patches of diamictites in a single small-sized area at Cobalt which is still interpreted as displaying subglacial basal tillites. The present research considers field evidence in the Gowganda Formation in the light of more recent work on gravity flows linked to tectonics. Detailed studies have demonstrated that the clasts which are interpreted to be dropstones rarely penetrate laminae and are commonly draped by sediments the appearance of which is similar to lonestones in gravity flows. The “subglacial area” at Cobalt displays evidence of tectonics and gravity flows, which can be traced from the underlying bedrock, and then further in the overlying sequence of diamictites and rhythmites. The sum of geological features displays appearances at odds with a primary glaciogenic origin, and there is no unequivocal evidence present of glaciation. The data indicate deposition by non-glaciogenic gravity flows, including cohesive debris flows for the more compact units, probably triggered by tectonic displacements.
Soft-sediment deformation structures play an important role in interpreting regional tectonics and basin evolution during slumping events. The Satpura Basin is interpreted as pull-apart with a monoclinal northerly palaeoslope throughout its evolution. The basin formed as a result of sinistral strike-slip faulting, induced by the ENE–WSW-trending Son-Narmada South fault in the north and the Tapti North fault in the south. We have analysed the slump folds within the basalmost Talchir Formation and related these to regional tectonics and palaeoslope changes in the Satpura Basin. The glaciofluvial strata of the Talchir Formation, exposed in the southern part of the Satpura Basin, record intricacies of folds created during slumping. Several fold styles can be distinguished, within alternations of competent sandstone and incompetent shale layers, some of which indicate buckling. Upright folds, resulting from pure shear, underwent rotation of their axial planes and fold axes during simple shear-dominated progressive deformation when the slump moved downslope. The soft-sediment deformation structures that we have studied show refolding patterns that closely resemble comparable folds known from lithified rocks. These layers with refolded structures are overlain by unde-formed sediments, which proves that they are the product of a single ongoing slumping process, rather than of successive deformation events. Our analysis of their fold axes and axial planes, together with fold vergences and thrust directions within the slumps, suggests a mean slumping direction towards the southwest. Analyses of slump folds and their relationship with regional tectonics have allowed us to reinterpret basin evolution history. The southwesterly trending palaeoslope of the basin suggest that the slope of the basin was not uniform throughout its evolution. At the opening, the oblique slip fault, which trended NE–SW, generated due to movement along the ENE–WSW basin bounding faults, was more active and triggered slumping event within the Talchir deposits in the basin. With progressive overlapping of the basin-bounding faults, the Satpura Basin gradually tilted towards the north.
Caves are rare in northeast Africa and, thus, deserve attention as potential geoheritage objects (geosites). Assessment of Djara Cave and its vicinity (Western Desert, Egypt) has permitted to document unique features, such as the cave itself as a peculiar subsurface landform, speleothems providing data for palaeoenvironmental reconstructions, rock art demonstrating elements of past landscapes, siliceous nodules weathered from Eocene limestones and a network of dry drainage channels indicative of wetter palaeoenvironments. These features are assigned to geomorphological, sedimentological and palaeogeographical types of geoheritage. Djara Cave and its vicinity are proposed as a geosite of national rank; it is vulnerable to anthropogenic stress and needs geoconservation measures and instalment of interpretative signs. This geosite is already popular among tourists, and can be used for further tourism development. More generally, the presence of caves in Egyptian desert areas makes possible the recognition of national speleological heritage that requires special country-level strategies of management.
The foraminiferal contents of the lower–middle Miocene succession exposed in three sections in north Nur Abad on the northwestern side of the High Zagros Thrust Belt were studied. Assemblages of larger foraminifera from these sections can be referred to Zone SBZ 25 (and the Miogypsina globulus and Miogypsina intermedia subzones), which correlates with the Burdigalian Stage. For the first time, planktonic foraminifera documented from the Nur Abad area document Lang-hian deposits in the High Zagros, the upper 20 metres of the upper Sayl Cheshmeh section being characterised by the occurrence of planktonic foraminifera such as Globigerina concinna (Reuss), Globigerina diplostoma (Reuss), Globigerinoides obliquus (Bolli), Orbulina bilobata (d’Orbigny) and O.universa (d’Orbigny). This association characterises the Orbulina suturalis Interval Zone.
Sediment accumulation is a process that is typical of all types of water reservoirs. The rate and pattern of such accumulation are related to processes taking place in catchments that produce the sediments and to those within reservoirs that determine the percentage of the inflowing load that is trapped and where it is deposited. To keep reservoirs in working order requires desilting and managing of such bottom sediments once they are removed. The choice of strategy for sediment management depends on chemical and physical properties which result from both natural and anthropogenic processes. To varying degrees, these sediments may be contaminated with chemical compounds, especially trace metals. Therefore, research is needed in order to assess the quality of sediments, which will allow to opt for the proper management strategy. Based on an analysis of the available literature, the possibility of using sediments from reservoirs has been determined, using quality criteria and in accordance with applicable law and regulations.