Accès libre

Interpretative Machine Learning as a Key in Recognizing the Variability of Lakes Trophy Patterns

À propos de cet article

Citez

Aggarwal C.C., Hinneburg A., Keim D.A., 2001. On the surprising behavior of distance metrics in high dimensional space. In: Lecture notes in computer science (including sub-series lecture notes in artificial intelligence and lecture notes in bioinformatics): 420–434. DOI 10.1007/3-540-44503-x_27.AggarwalC.C.HinneburgA.KeimD.A.2001On the surprising behavior of distance metrics in high dimensional spaceIn:Lecture notes in computer science (including sub-series lecture notes in artificial intelligence and lecture notes in bioinformatics)42043410.1007/3-540-44503-x_27Open DOISearch in Google Scholar

Akbar T.A., Hassan Q.K., Achari G., 2011. A methodology for clustering lakes in Alberta on the basis of water quality parameters. Clean – Soil, Air, Water 39: 916–924. DOI 10.1002/clen.201100050.AkbarT.A.HassanQ.K.AchariG.2011A methodology for clustering lakes in Alberta on the basis of water quality parametersClean – Soil, Air, Water3991692410.1002/clen.201100050Open DOISearch in Google Scholar

Apolinarska K., Pleskot K., Pełechata A., Migdałek M., Siepak M., Pełechaty M., 2020. The recent deposition of laminated sediments in highly eutrophic Lake Kierskie, Western Poland: 1 year pilot study of limnological monitoring and sediment traps. Journal of Paleolimnology 63: 283–304. DOI 10.1007/s10933-020-00116-2.ApolinarskaK.PleskotK.PełechataA.MigdałekM.SiepakM.PełechatyM.2020The recent deposition of laminated sediments in highly eutrophic Lake Kierskie, Western Poland: 1 year pilot study of limnological monitoring and sediment trapsJournal of Paleolimnology6328330410.1007/s10933-020-00116-2Open DOISearch in Google Scholar

Bajkiewicz-Grabowska E., 2020. Geoecosystems of Polish Lakes. In: Korzeniewska E., Harnisz M. (eds), Polish River Basins and Lakes – Part I. The handbook of environmental chemistry, vol. 86. Springer, Cham. DOI 10.1007/978-3-030-12123-5_3.Bajkiewicz-GrabowskaE.2020Geoecosystems of Polish LakesIn:KorzeniewskaE.HarniszM.(eds),Polish River Basins and Lakes – Part I. The handbook of environmental chemistry86SpringerCham10.1007/978-3-030-12123-5_3Open DOISearch in Google Scholar

Beaulieu, M., Pick, F., Palmer, M., Watson, S., Winter, J., Zurawell, R., Gregory-Eaves, I., 2014. Comparing predictive cyanobacterial models from temperate regions. Canadian Journal of Fisheries and Aquatic Sciences 71: 1830–1839. DOI 10.1139/CJFAS-2014-0168/SUPPL_FILE/CJFAS-2014-0168SUPPLC.PDF.BeaulieuM.PickF.PalmerM.WatsonS.WinterJ.ZurawellR.Gregory-EavesI.2014Comparing predictive cyanobacterial models from temperate regionsCanadian Journal of Fisheries and Aquatic Sciences711830183910.1139/CJFAS-2014-0168/SUPPL_FILE/CJFAS-2014-0168SUPPLC.PDFOpen DOISearch in Google Scholar

Benedini M., Tsakiris G., 2013. Water quality modelling for rivers and streams. Springer, p 233. DOI 10.1007/978-94-007-5509-3.BenediniM.TsakirisG.2013Water quality modelling for rivers and streamsSpringer23310.1007/978-94-007-5509-3Open DOISearch in Google Scholar

Biecek P., 2018. DALEX: explainers for complex predictive models in r. The Journal of Machine Learning Research 19: 3245–3249.BiecekP.2018DALEX: explainers for complex predictive models in rThe Journal of Machine Learning Research1932453249Search in Google Scholar

Borics G., Nagy L., Miron S., Grigorszky I., László-Nagy Z., Lukács B.A., G-Tóth L., Várbíró G., 2013. Which factors affect phytoplankton biomass in shallow eutrophic lakes? Hydrobiologia 714: 93–104. DOI 10.1007/S10750-013-1525-6/FIGURES/3.BoricsG.NagyL.MironS.GrigorszkyI.László-NagyZ.LukácsB.A.G-TóthL.VárbíróG.2013Which factors affect phytoplankton biomass in shallow eutrophic lakes?Hydrobiologia7149310410.1007/S10750-013-1525-6/FIGURES/3Open DOISearch in Google Scholar

Bourel M., Segura A.M., 2018. Multiclass classification methods in ecology. Ecological Indicators 85: 1012–1021. DOI 10.1016/J.ECOLIND.2017.11.031.BourelM.SeguraA.M.2018Multiclass classification methods in ecologyEcological Indicators851012102110.1016/J.ECOLIND.2017.11.031Open DOISearch in Google Scholar

Breiman L., 2001. Random forests. Machine Learning 45: 5–32. DOI 10.1023/A:1010933404324.BreimanL.2001Random forestsMachine Learning4553210.1023/A:1010933404324Open DOISearch in Google Scholar

Chen V., Li J., Kim J.S., Plumb G., Talwalkar A., 2021. Interpretable machine learning. Queue 19: 28–56. DOI 10.1145/3511299.ChenV.LiJ.KimJ.S.PlumbG.TalwalkarA.2021Interpretable machine learningQueue19285610.1145/3511299Open DOISearch in Google Scholar

Cox T., Cox M., 2000. Multidimensional scaling. 2nd edition. Chapman and Hall/CRC, p 328. DOI 10.1201/9780367801700.CoxT.CoxM.2000Multidimensional scaling2nd editionChapman and Hall/CRC32810.1201/9780367801700Open DOISearch in Google Scholar

Cui H., Ou Y., Wang L., Wu H., Yan B., Han L., Li Y., 2019. Identification of environmental factors controlling phosphorus fractions and mobility in restored wetlands by multivariate statistics. Environmental Science and Pollution Research 26: 16014–16025. DOI 10.1007/s11356-019-05028-x.CuiH.OuY.WangL.WuH.YanB.HanL.LiY.2019Identification of environmental factors controlling phosphorus fractions and mobility in restored wetlands by multivariate statisticsEnvironmental Science and Pollution Research26160141602510.1007/s11356-019-05028-x30968294Open DOISearch in Google Scholar

Dafforn K.A., Johnston E.L., Ferguson A., Humphrey C., Monk W., Nichols S.J., Simpson S.L., Tulbure M.G., Baird D.J., 2015. Big data opportunities and challenges for assessing multiple stressors across scales in aquatic ecosystems. Marine and Freshwater Research 67: 393–413. DOI 10.1071/MF15108.DaffornK.A.JohnstonE.L.FergusonA.HumphreyC.MonkW.NicholsS.J.SimpsonS.L.TulbureM.G.BairdD.J.2015Big data opportunities and challenges for assessing multiple stressors across scales in aquatic ecosystemsMarine and Freshwater Research6739341310.1071/MF15108Open DOISearch in Google Scholar

Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., Marquéz J.R., Gruber B., Lafourcade B., Leitão P.J., Münkemüller T., Mcclean C., Osborne P.E., Reineking B., Schröder B., Skidmore A.K., Zurell D., Lautenbach S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. DOI 10.1111/J.1600-0587.2012.07348.X.DormannC.F.ElithJ.BacherS.BuchmannC.CarlG.CarréG.MarquézJ.R.GruberB.LafourcadeB.LeitãoP.J.MünkemüllerT.MccleanC.OsborneP.E.ReinekingB.SchröderB.SkidmoreA.K.ZurellD.LautenbachS.2013Collinearity: a review of methods to deal with it and a simulation study evaluating their performanceEcography36274610.1111/J.1600-0587.2012.07348.XOpen DOISearch in Google Scholar

EEA 2018. Corine land cover (CLC) 2018, version 2020-20u1. Online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed: XXX).EEA2018Corine land cover (CLC) 2018, version 2020-20u1Online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed: XXX).Search in Google Scholar

Eliasz-Kowalska M., Wojtal A.Z., 2020. Limnological characteristics and diatom dominants in lakes of Northeastern Poland. Diversity 12: 1–16. DOI 10.3390/d12100374.Eliasz-KowalskaM.WojtalA.Z.2020Limnological characteristics and diatom dominants in lakes of Northeastern PolandDiversity1211610.3390/d12100374Open DOISearch in Google Scholar

Friedman J.H., 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29: 1189–1232.FriedmanJ.H.2001Greedy function approximation: A gradient boosting machineAnnals of Statistics291189123210.1214/aos/1013203451Search in Google Scholar

Froeschke J.T., Froeschke B.F., 2011. Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fisheries Research 111: 131–138. DOI 10.1016/j.fishres.2011.07.008.FroeschkeJ.T.FroeschkeB.F.2011Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression treesFisheries Research11113113810.1016/j.fishres.2011.07.008Open DOISearch in Google Scholar

Gebler D., Kolada A., Pasztaleniec A., Szoszkiewicz K., 2021. Modelling of ecological status of Polish lakes using deep learning techniques. Environmental Science and Pollution Research 28: 5383–5397. DOI 10.1007/s11356-020-10731-1.GeblerD.KoladaA.PasztaleniecA.SzoszkiewiczK.2021Modelling of ecological status of Polish lakes using deep learning techniquesEnvironmental Science and Pollution Research285383539710.1007/s11356-020-10731-1783814432964383Open DOISearch in Google Scholar

Genuer R., Poggi J.M., Tuleau-Malot C., 2010. Variable selection using random forests. Pattern Recognition Letters 31: 2225–2236. DOI 10.1016/j.patrec.2010.03.014.GenuerR.PoggiJ.M.Tuleau-MalotC.2010Variable selection using random forestsPattern Recognition Letters312225223610.1016/j.patrec.2010.03.014Open DOISearch in Google Scholar

Goggin M.L., 1986. The “Too Few Cases/Too Many Variables” problem in implementation research. The Western Political Quarterly 39: 328. DOI 10.2307/448302.GogginM.L.1986The “Too Few Cases/Too Many Variables” problem in implementation researchThe Western Political Quarterly3932810.2307/448302Open DOISearch in Google Scholar

Gorgoglione A., Gregorio J., Ríos A., Alonso J., Chreties C., Fossati M., 2020. Influence of land use/land cover on surface-water quality of Santa Lucia River, Uruguay. Sustainability (Switzerland) 12. DOI 10.3390/su12114692.GorgoglioneA.GregorioJ.RíosA.AlonsoJ.ChretiesC.FossatiM.2020Influence of land use/land cover on surface-water quality of Santa Lucia River, UruguaySustainability (Switzerland)1210.3390/su12114692Open DOISearch in Google Scholar

Guan M., Sillanpää N., Koivusalo H., 2016. Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrological Processes 30: 543–557. DOI 10.1002/HYP.10624.GuanM.SillanpääN.KoivusaloH.2016Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchmentHydrological Processes3054355710.1002/HYP.10624Open DOISearch in Google Scholar

Håkanson L., 2005. The importance of lake morphometry and catchment characteristics in limnology – Ranking based on statistical analyses. Hydrobiologia 541: 117–137. DOI 10.1007/s10750-004-5032-7.HåkansonL.2005The importance of lake morphometry and catchment characteristics in limnology – Ranking based on statistical analysesHydrobiologia54111713710.1007/s10750-004-5032-7Open DOISearch in Google Scholar

Harrell F.E., 2015. Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis. Springer, New York, p 582. DOI 10.1007/978-3-319-19425-7.HarrellF.E.2015Regression modeling strategies: With applications to linear models, logistic regression, and survival analysisSpringerNew York58210.1007/978-3-319-19425-7Open DOISearch in Google Scholar

Hernández-Almeida I., Grosjean M., Gómez-Navarro J.J., Larocque-Tobler I., Bonk A., Enters D., Ustrzycka A., Pi otrowska N., Przybylak R., Wacnik A., Witak M., Tylmann W., 2017. Resilience, rapid transitions and regime shifts: Fingerprinting the responses of Lake Zabińskie (NE Poland) to climate variability and human disturbance since AD 1000. The Holocene 27: 258–270. DOI 10.1177/0959683616658529.Hernández-AlmeidaI.GrosjeanM.Gómez-NavarroJ.J.Larocque-ToblerI.BonkA.EntersD.UstrzyckaA.Pi otrowskaN.PrzybylakR.WacnikA.WitakM.TylmannW.2017Resilience, rapid transitions and regime shifts: Fingerprinting the responses of Lake Zabińskie (NE Poland) to climate variability and human disturbance since AD 1000The Holocene2725827010.1177/0959683616658529Open DOISearch in Google Scholar

Hollister J.W., Milstead W.B., Kreakie B.J., 2016. Modeling lake trophic state: A random forest approach. Ecosphere 7: 1–14. DOI 10.1002/ecs2.1321.HollisterJ.W.MilsteadW.B.KreakieB.J.2016Modeling lake trophic state: A random forest approachEcosphere711410.1002/ecs2.1321Open DOISearch in Google Scholar

Huang J., Gao J., Zhang Y., 2015. Combination of artificial neural network and clustering techniques for predicting phyto plankton biomass of Lake Poyang, China. Limnology 16: 179–191. DOI 10.1007/S10201-015-0454-7/TABLES/5.HuangJ.GaoJ.ZhangY.2015Combination of artificial neural network and clustering techniques for predicting phyto plankton biomass of Lake Poyang, ChinaLimnology1617919110.1007/S10201-015-0454-7/TABLES/5Open DOISearch in Google Scholar

Jańczak J., 1999. The Atlas of Polish Lakes, vol. 3 Masurian Lakes and the Southern Part of Poland. Bogucki Wydawnictwo Naukowe, Poznań.JańczakJ.1999The Atlas of Polish Lakes, vol. 3 Masurian Lakes and the Southern Part of PolandBogucki Wydawnictwo NaukowePoznańSearch in Google Scholar

Jasiewicz J., Metz M., 2011. A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Computers and Geosciences 37: 1162–1173. DOI 10.1016/j.cageo.2011.03.003.JasiewiczJ.MetzM.2011A new GRASS GIS toolkit for Hortonian analysis of drainage networksComputers and Geosciences371162117310.1016/j.cageo.2011.03.003Open DOISearch in Google Scholar

Jasiewicz J., Niedzielski P., Krueger M., Hildebrandt-Radke I., Michałowski A., 2021. Elemental variability of prehistoric ceramics from postglacial lowlands and its implications for emerging of pottery traditions – an example from the pre-roman iron age. Journal of Archaeological Science: Reports 39: 103177.JasiewiczJ.NiedzielskiP.KruegerM.Hildebrandt-RadkeI.MichałowskiA.2021Elemental variability of prehistoric ceramics from postglacial lowlands and its implications for emerging of pottery traditions – an example from the pre-roman iron ageJournal of Archaeological Science: Reports3910317710.1016/j.jasrep.2021.103177Search in Google Scholar

Jones J.R., Knowlton M.F., Obrecht D.V., Cook E.A., 2004. Importance of landscape variables and morphology on nutrients in Missouri reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 61: 1503–1512. DOI 10.1139/F04-088.JonesJ.R.KnowltonM.F.ObrechtD.V.CookE.A.2004Importance of landscape variables and morphology on nutrients in Missouri reservoirsCanadian Journal of Fisheries and Aquatic Sciences611503151210.1139/F04-088Open DOISearch in Google Scholar

Jones K.B., Neale A.C., Nash M.S., Van Remortel R.D., Wickham J.D., Riitters K.H., O’Neill R.V., 2001. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecology 16: 301–312. DOI 10.1023/A:1011175013278.JonesK.B.NealeA.C.NashM.S.Van RemortelR.D.WickhamJ.D.RiittersK.H.O’NeillR.V.2001Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic RegionLandscape Ecology1630131210.1023/A:1011175013278Open DOISearch in Google Scholar

Kandel D.D., Western A.W., Grayson R.B., Turral H.N., 2004. Process parameterization and temporal scaling in surface runoff and erosion modelling. Hydrological Processes 18: 1423–1446. DOI 10.1002/HYP.1421.KandelD.D.WesternA.W.GraysonR.B.TurralH.N.2004Process parameterization and temporal scaling in surface runoff and erosion modellingHydrological Processes181423144610.1002/HYP.1421Open DOISearch in Google Scholar

Kallf J., 2001. Limnology: inland water ecosystems. Prentice Hall, New Jersey, p 592.KallfJ.2001Limnology: inland water ecosystemsPrentice HallNew Jersey592Search in Google Scholar

Kocev D., Ceci M., Stepišnik T., 2020. Ensembles of extremely randomized predictive clustering trees for predicting structured outputs. Machine Learning 109: 2213–2241. DOI 10.1007/S10994-020-05894-4/FIGURES/14.KocevD.CeciM.StepišnikT.2020Ensembles of extremely randomized predictive clustering trees for predicting structured outputsMachine Learning1092213224110.1007/S10994-020-05894-4/FIGURES/14Open DOISearch in Google Scholar

Kondracki J., 2009. Geografia regionalna Polski. Wydanie trzecie, Wydawnictwo Naukowe PWN, Kraków.KondrackiJ.2009Geografia regionalna PolskiWydanie trzecie, Wydawnictwo Naukowe PWNKrakówSearch in Google Scholar

Lange W., 1986. Fizyczno-limnologiczne uwarunkowania tolerancji systemów jeziornych Pomorza. Zeszyty Naukowe UG Rozprawy i monografie nr 79, Gdańsk, 3–177.LangeW.1986Fizyczno-limnologiczne uwarunkowania tolerancji systemów jeziornych PomorzaZeszyty Naukowe UG Rozprawy i monografie nr 79,Gdańsk3177Search in Google Scholar

Leach T.H., Beisner B.E., Carey C.C., Pernica P., Rose K.C., Huot Y., Brentrup J.A., Domaizon I., Grossart H.P., Ibelings B.W., Jacquet S., Kelly P.T., Rusak J.A., Stockwell J.D., Straile D., Verburg P., 2018. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnology and Oceanography 63: 628–646. DOI 10.1002/lno.10656.LeachT.H.BeisnerB.E.CareyC.C.PernicaP.RoseK.C.HuotY.BrentrupJ.A.DomaizonI.GrossartH.P.IbelingsB.W.JacquetS.KellyP.T.RusakJ.A.StockwellJ.D.StraileD.VerburgP.2018Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratificationLimnology and Oceanography6362864610.1002/lno.10656Open DOISearch in Google Scholar

Li B., Yang G., Wan R., Dai X., Zhang Y., 2016. Comparison of random forests and other statistical methods for the prediction of Lake water level: A case study of the Poyang Lake in China. Hydrology Research 47: 69–83. DOI 10.2166/nh.2016.264.LiB.YangG.WanR.DaiX.ZhangY.2016Comparison of random forests and other statistical methods for the prediction of Lake water level: A case study of the Poyang Lake in ChinaHydrology Research47698310.2166/nh.2016.264Open DOISearch in Google Scholar

Li B., Yang G., Wan R., Hörmann G., Huang J., Fohrer N., Zhang L., 2017. Combining multivariate statistical techniques and random forests model to assess and diagnose the trophic status of Poyang Lake in China. Ecological Indicators 83: 74–83. DOI 10.1016/j.ecolind.2017.07.033.LiB.YangG.WanR.HörmannG.HuangJ.FohrerN.ZhangL.2017Combining multivariate statistical techniques and random forests model to assess and diagnose the trophic status of Poyang Lake in ChinaEcological Indicators83748310.1016/j.ecolind.2017.07.033Open DOISearch in Google Scholar

Li T., Li S., Liang C., Bush R.T., Xiong L., Jiang Y., 2018. A comparative assessment of Australia’s Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. Journal of Cleaner Production 190: 1–11. DOI 10.1016/j.jclepro.2018.04.121.LiT.LiS.LiangC.BushR.T.XiongL.JiangY.2018A comparative assessment of Australia’s Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniquesJournal of Cleaner Production19011110.1016/j.jclepro.2018.04.121Open DOISearch in Google Scholar

Li W., Zhang Y., Cui L., Zhang M., Wang Y., 2015. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks. Environmental Science and Pollution Research 22: 12347–12354. DOI 10.1007/S11356-015-4527-2/TABLES/2.LiW.ZhangY.CuiL.ZhangM.WangY.2015Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networksEnvironmental Science and Pollution Research22123471235410.1007/S11356-015-4527-2/TABLES/2Open DOISearch in Google Scholar

Lundberg S.M., Lee S.I., 2017. A unified approach to interpreting model predictions. arXiv, 1–10. Online: https://github.com/slundberg/shap (accessed ??.??.????).LundbergS.M.LeeS.I.2017A unified approach to interpreting model predictionsarXiv110Online: https://github.com/slundberg/shap (accessed ??.??.????).Search in Google Scholar

Marks L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44: 81–88. DOI 10.1016/j.quascirev.2010.08.008.MarksL.2012Timing of the Late Vistulian (Weichselian) glacial phases in PolandQuaternary Science Reviews44818810.1016/j.quascirev.2010.08.008Open DOISearch in Google Scholar

Marks L., Ber A., Gogo Lek, W., Piotrowska K., 2006. Geological map of Poland 1:500000. Państwowy Instytut Geologiczny, Warszawa.MarksL.BerA.Gogo LekW.PiotrowskaK.2006Geological map of Poland 1:500000Państwowy Instytut GeologicznyWarszawaSearch in Google Scholar

Molnar C., Casalicchio G., Bischl B., 2020. Interpretable machine learning – a brief history, state-of-the-art and challenges. In: Hands-on machine learning with R, 417–431. DOI 10.1007/978-3-030-65965-3_28.MolnarC.CasalicchioG.BischlB.2020Interpretable machine learning – a brief history, state-of-the-art and challengesIn:Hands-on machine learning with R41743110.1007/978-3-030-65965-3_28Open DOISearch in Google Scholar

Morawski W., 2005. Warmińska prowincja paleogeograficzna plejstocenu (północno-wschodnia Polska). Przeglad Geologiczny 53: 477–488.MorawskiW.2005Warmińska prowincja paleogeograficzna plejstocenu (północno-wschodnia Polska)Przeglad Geologiczny53477488Search in Google Scholar

Ohle W., 1956. Bioactivity, production, and energy utilization of lakes. Limnology and Oceanography 1: 139–149. DOI 10.4319/lo.1956.1.3.0139.OhleW.1956Bioactivity, production, and energy utilization of lakesLimnology and Oceanography113914910.4319/lo.1956.1.3.0139Open DOISearch in Google Scholar

Pochocka-Szwarc K., 2013. Some aspects of the last glaciation in the Mazury Lake District (north-eastern Poland). Acta Palaeobotanica 53: 3–8. DOI 10.2478/acpa-2013-0001.Pochocka-SzwarcK.2013Some aspects of the last glaciation in the Mazury Lake District (north-eastern Poland)Acta Palaeobotanica533810.2478/acpa-2013-0001Open DOISearch in Google Scholar

Ribeiro M.T., Singh S., Guestrin C., 2016. Why Should I Trust You? In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA. 1135–1144. DOI 10.1145/2939672.2939778.RibeiroM.T.SinghS.GuestrinC.2016Why Should I Trust You?In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningACMNew York, NY, USA1135114410.1145/2939672.2939778Open DOISearch in Google Scholar

Rocha J.C., Peres C.K., Buzzo J.L.L., de Souza V., Krause E.A., Bispo P.C., Frei F., Costa L.S., Branco C.C., 2017. Modeling the species richness and abundance of lotic macroalgae based on habitat characteristics by artificial neural networks: a potentially useful tool for stream biomonitoring programs. Journal of Applied Phycology 29: 2145–2153. DOI 10.1007/s10811-017-1107-5.RochaJ.C.PeresC.K.BuzzoJ.L.L.de SouzaV.KrauseE.A.BispoP.C.FreiF.CostaL.S.BrancoC.C.2017Modeling the species richness and abundance of lotic macroalgae based on habitat characteristics by artificial neural networks: a potentially useful tool for stream biomonitoring programsJournal of Applied Phycology292145215310.1007/s10811-017-1107-5Open DOISearch in Google Scholar

Rodhe W., 1969. Crystallization of eutrophication concepts in northern Europe. In: Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington: 50–64.RodheW.1969Crystallization of eutrophication concepts in northern EuropeIn:Eutrophication: causes, consequences, correctivesNational Academy of SciencesWashington5064Search in Google Scholar

Schindler D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262. DOI 10.1126/science.195.4275.260.SchindlerD.W.1977Evolution of phosphorus limitation in lakesScience19526026210.1126/science.195.4275.26017787798Open DOISearch in Google Scholar

Shapely L.S., 1953. A value of n-person games. In: Kuhn H., Tucker A. (eds.) Contribution to the theory of games II. Princeton University, Princeton, 307–317.ShapelyL.S.1953A value of n-person gamesIn:KuhnH.TuckerA.(eds.)Contribution to the theory of games IIPrinceton UniversityPrinceton307317Search in Google Scholar

Shrikumar A., Greenside P., Kundaje A., 2017. Learning important features through propagating activation differences. In: 34th International Conference on Machine Learning, ICML 2017, 4844–4866. arXiv:1704.02685.ShrikumarA.GreensideP.KundajeA.2017Learning important features through propagating activation differencesIn:34th International Conference on Machine LearningICML201748444866arXiv:1704.02685.Search in Google Scholar

Simeonov V., Simeonova P., Tsakovski S., Lovchinov V., 2010. Lake water monitoring data assessment by multivariate statistics. Journal of Water Resource and Protection 2: 353–361. DOI 10.4236/jwarp.2010.24041.SimeonovV.SimeonovaP.TsakovskiS.LovchinovV.2010Lake water monitoring data assessment by multivariate statisticsJournal of Water Resource and Protection235336110.4236/jwarp.2010.24041Open DOISearch in Google Scholar

Staehr P.A., Baastrup-Spohr L., Sand-Jensen K., Stedmon C., 2012. Lake metabolism scales with lake morphometry and catchment conditions. Aquatic Sciences 74: 155–169. DOI 10.1007/s00027-011-0207-6.StaehrP.A.Baastrup-SpohrL.Sand-JensenK.StedmonC.2012Lake metabolism scales with lake morphometry and catchment conditionsAquatic Sciences7415516910.1007/s00027-011-0207-6Open DOISearch in Google Scholar

Su S., Li D., Zhang Q., Xiao R., Huang F., Wu J., 2011. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Research 45: 1781–1795. DOI 10.1016/J.WATRES.2010.11.030.SuS.LiD.ZhangQ.XiaoR.HuangF.WuJ.2011Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, ChinaWater Research451781179510.1016/J.WATRES.2010.11.03021147494Open DOISearch in Google Scholar

Sun A.Y., Scanlon B.R., 2019. How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters 14(7): 073001. DOI 10.1088/1748-9326/ab1b7d.SunA.Y.ScanlonB.R.2019How can big data and machine learning benefit environment and water management: A survey of methods, applications, and future directionsEnvironmental Research Letters14707300110.1088/1748-9326/ab1b7dOpen DOISearch in Google Scholar

Tandyrak R., Grochowska J., Parszuto K., Augustyniak R., Łopata M., 2020. Environmental conditions in polish lakes with different types of catchments. In: Korzeniewska E., Harnisz M. (eds), Polish River Basins and Lakes – Part I. The handbook of environmental chemistry, vol 86. Springer, Cham. 119–138.TandyrakR.GrochowskaJ.ParszutoK.AugustyniakR.ŁopataM.2020Environmental conditions in polish lakes with different types of catchmentsIn:KorzeniewskaE.HarniszM.(eds),Polish River Basins and Lakes – Part I. The handbook of environmental chemistry86SpringerCham11913810.1007/978-3-030-12123-5_6Search in Google Scholar

Tylmann W., Szpakowska K., Ohlendorf C., Woszczyk M., Zolitschka B., 2012. Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland). Journal of Paleolimnology 47: 55–70. DOI 10.1007/s10933-011-9548-3.TylmannW.SzpakowskaK.OhlendorfC.WoszczykM.ZolitschkaB.2012Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland)Journal of Paleolimnology47557010.1007/s10933-011-9548-3Open DOISearch in Google Scholar

Yeo I.N., Johnson R.A., 2000. A new family of power transformations to improve normality or symmetry. Biometrika 87: 954–959. DOI 10.1093/biomet/87.4.954.YeoI.N.JohnsonR.A.2000A new family of power transformations to improve normality or symmetryBiometrika8795495910.1093/biomet/87.4.954Open DOISearch in Google Scholar

Weckwerth P., Wysota W., Piotrowski J.A., Adamczyk A., Krawiec A., Dąbrowski M., 2019. Late Weichselian glacier outburst floods in North-Eastern Poland: landform evidence and palaeohydraulic significance. Earth-Science Reviews 194: 216–233. DOI 10.1016/j.earscirev.2019.05.006.WeckwerthP.WysotaW.PiotrowskiJ.A.AdamczykA.KrawiecA.DąbrowskiM.2019Late Weichselian glacier outburst floods in North-Eastern Poland: landform evidence and palaeohydraulic significanceEarth-Science Reviews19421623310.1016/j.earscirev.2019.05.006Open DOISearch in Google Scholar

eISSN:
2081-6383
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Geosciences, Geography