Interpretative Machine Learning as a Key in Recognizing the Variability of Lakes Trophy Patterns
01 avr. 2022
À propos de cet article
Publié en ligne: 01 avr. 2022
Pages: 127 - 146
Reçu: 14 févr. 2022
DOI: https://doi.org/10.2478/quageo-2022-0009
Mots clés
© 2022 Jarosław Jasiewicz et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Explanatory variables used in the study_
Variable | Abbreviation | Unit | Source |
---|---|---|---|
Elevation | ELEV | m a.s.l. | |
Lake area | LARE | ha | |
Lake capacity | LCAP | km3 | |
Lake max depth | LDMX | m | |
Lake average depth | LDAV | m | |
Lake max length | LLEN | m | |
Lake max width | LWID | m | |
Lake shoreline length | PRIM | m | |
Lake elongation | LELN | Ratio | |
Lake capacity/length ratio | LVAR | Ratio | LCAP / LLEN |
Lake perim development | LPDV | Ratio | LLEN / sqrt (2 × π × LARE) |
Lake exposition | LEXP | Ratio | LARE / LDAV |
Watershed area | WARE | ha | Calculated |
Mean slope | WSLP | % | Calculated |
Height stddev | WHSD | m | Calculated |
Urbanised | WURB | % | Calculated |
Agriculture | WAGR | % | Calculated |
Forests | WFRS | % | Calculated |
Wetlands | WWET | % | Calculated |
Sands | WSND | % | Calculated |
Tills | WTLS | % | Calculated |
Clay | WCLS | % | Calculated |
Organic | WORG | % | Calculated |
Schindler ratio | SR | Ratio | |
Ohle ratio | OR | Ratio | WARE / LARE |