À propos de cet article

Citez

Xin H, Xu L, Yuli S, Feng Q, Gang C. Current Trends in Research on Bone Regeneration: A Bibliometric Analysis. Biomed Res Int. 2020: 8787394. https://doi.org/10.1155/2020/8787394Search in Google Scholar

El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004;69(3):490-501. https://doi.org/10.1002/jbm.a.30022Search in Google Scholar

Guoke T, Zhiqin L, Jiangming Yu, Xing W, Zhihong T, Xiaojian Y. 2021. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. https://doi.org/10.3389/fcell.2021.665813Search in Google Scholar

Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137-1158. https://doi.org/10.1098/rsif.2008.0151Search in Google Scholar

Gloivacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg. 1985;12(2):233-241. https://doi.org/10.1016/S0094-1298(20)31694-1Search in Google Scholar

Buck BE, Malinin TI, Brown MD. 1989. Bone transplantation and human immunodeficiency virus. An estimate of risk of aquired immunodeficiency syndrome. Clin Orthop Relat Res. 1989;(240):129-136.Search in Google Scholar

Ziman ZZ. Calcium phosphate biomaterials. KhNU named after VN Karazin; 2018.Search in Google Scholar

Barinov SM, Komlev VS. Bioceramics based on calcium phosphates. Nauka; 2005.Search in Google Scholar

Slutsky L, Vetra Y. Biological issues of biomaterials science. Latvian Medical Academy; 2001.Search in Google Scholar

Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963-977. https://doi.org/10.1016/j.actbio.2011.09.003Search in Google Scholar

Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials (Basel). 2013;6(9):3840-3942. https://doi.org/10.3390/ma6093840Search in Google Scholar

LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14(1):65-88. https://doi.org/10.1016/0267-6605(93)90049-dSearch in Google Scholar

LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;(395):81-98. https://doi.org/10.1097/00003086-200202000-00009Search in Google Scholar

Nathanael JA, Oyane A, Nakamura M, Koga K, Nishida E, Tanaka S, Miyaji H. Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon. 2018;4(8):e00734. https://doi.org/10.1016/j.heliyon.2018.e00734Search in Google Scholar

Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014 20;5(3):108-114.Search in Google Scholar

El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101. https://doi.org/10.1586/17434440.2.1.87Search in Google Scholar

Narayan RJ. The next generation of biomaterial development. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1917):1831-1837. https://doi.org/10.1098/rsta.2010.0001Search in Google Scholar

Uvarova IV, Gorbik PP, Gorobets SV, Ivashchenko OA, Ulyanchich NV. Nanomaterials for medical purposes. Naukova Dumka; 2014.Search in Google Scholar

Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19(1-3):133-139. https://doi.org/10.1016/s0142-9612(97)00180-4Search in Google Scholar

Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037-8045. https://doi.org/10.1016/j.actbio.2013.06.014Search in Google Scholar

Muñoz-Corcuera M, Bascones-Martinez A, Ripollés RJ. Post-extraction application of beta tricalcium phosphate in alveolar socket. J Osseointegration. 2015;7(1):8-14. https://doi.org/10.23805/jo.2015.07.01.02Search in Google Scholar

Habibovica P, Yuanb H, Van Der Valkb CM, Meijerc G, Van Blitterswijka CA, De Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26(17):3565-3575. https://doi.org/10.1016/j.biomaterials.2004.09.056Search in Google Scholar

Liu B, Lun DX. 2012. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139-144. https://doi.org/10.1111/j.1757-7861.2012.00189.xSearch in Google Scholar

Ezzahmouly M, Elmoutaouakkil A, Ed-Dhahraouy M, Khallok H, Elouahli A, Mazurier A, ElAlbani A, Hatim Z. Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations. Heliyon. 2019;5(12):e02557. https://doi.org/10.1016/j.heliyon.2019.e02557.Search in Google Scholar

Truite CVR, Noronha JNG, Prado GC, Santos LN, Palácios RS, Do Nascimento A, et al. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with Cyclodextrin in Bone Regeneration. Biomolecules. 2022;12(3):383. https://doi.org/10.3390/biom12030383Search in Google Scholar

Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical. Materials (Basel). 2017;10(4):334. https://doi.org/10.3390/ma10040334Search in Google Scholar

Ebrahimi M. Biomimetic principle for development of nanocomposite biomaterials in tissue engineering. In: Inamuddin AM, Asiri AM, ed. Applications of Nanocomposite Materials in Orthopedics. Woodhead; 2018:287-306.Search in Google Scholar

Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. 2007;17:4690-4698. https://doi.org/10.1039/B710936ASearch in Google Scholar

Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41(17):3130-3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1Search in Google Scholar

Astala R, Calderin I, Yin X, Stott MJ. Ab initio simulation of Si-doped hydroxyapatite. Chem Mater. 2005;18(2):413-422. https://doi.org/10.1021/cm051989xSearch in Google Scholar

Rau JV, Cacciotti I, Laureti S, Fosra M, Varvaro G, Latini A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J Biomed Mater Res B Appl Biomater. 2015;103(8):1621-1631. https://doi.org/10.1002/jbm.b.33344Search in Google Scholar

Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicatesubstituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27(29):5014-5026. https://doi.org/10.1016/j.biomaterials.2006.05.039Search in Google Scholar

Szurkowska K, Szeleszczuk L, Kolmas J. Effects of Synthesis Conditions on the Formation of Si-Substituted Alpha Tricalcium Phosphates. Int J Mol Sci. 2020;21(23):9164. https://doi.org/10.3390/ijms21239164Search in Google Scholar

Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279-280. https://doi.org/10.1126/science.167.3916.279Search in Google Scholar

Tavafoghi M, Kinsella JM, Gamys CG, Gosselin M, Zhao YF. Silicon-doped hydroxyapatite prepared by a thermal technique for hard tissue engineering applications. Ceram Int. 2018;44(15):17612-17622. https://doi.org/10.1016/j.ceramint.2018.06.071Search in Google Scholar

Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Dulian P, et al. Mechanochemical synthesis and investigations of calcium titanate powders and their acrylic dispersions. J Eur Ceram Soc. 2014;34(10):2259-2264. https://doi.org/10.3390/ma13153275Search in Google Scholar

Sahalevych AI, Sergiychuk RV, Ozhohin VV, Khrapchuk AYu, Dubovyi YO, Frolov OS. The Modified Procedure of Totally Tubeless PNL. Int J Biol Biomed Engin. 2022;16:82-89. https://doi.org/10.46300/91011.2022.16.10Search in Google Scholar

Sobczak-Kupiec A, Olender E, Malina D, Tyliszczak B. Effect of calcination parameters on behavior of bone hydroxyapatite in artificial saliva and its biosafety. Mater Chem Phys. 2018;206:158-165. https://doi.org/10.1016/j.matchemphys.2017.12.020Search in Google Scholar

Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res A. 2004;69(4):670-679. https://doi.org/10.1002/jbm.a.30035Search in Google Scholar

Sahalevych A, Sergiychuk R, Ozhohin V, Vozianov O, Khrapchuk A, Dubovyi Y, Frolov O. Mini-percutaneous nephrolithotomy in surgery of Nephrolithiasis. Ukrain J Nephrol Dialys. 2021;(3):44-52.Search in Google Scholar

Sobczak-Kupiec A, Malina D, Tyliszczak B, Piatkowski M, Bialik-Was K, Wzorek Z. Evaluation of bioactivity of Poly(Acrylic acid) - hydroxyapatite - nanogold composites in in vitro conditions. Digest J Nanomat Biostruct. 2012;7(2):459-467.Search in Google Scholar

Tang Q, Brooks R, Rushton N, Best S. Production and characterization of HA and SiHA coatings. J Mater Sci Mater Med. 2010;21(1):173-181. https://doi.org/10.1007/s10856-009-3841-ySearch in Google Scholar

Tyliszczak B, Pielichowski K. Novel hydrogels containing nanosilver for biomedical applications - Synthesis and characterization. J Polym Res. 2013;20(7): 191. https://doi.org/10.1007/s10965-013-0191-8Search in Google Scholar

Polatova DSh, Islamov UF, Davletov RR, Savkin AV, Sharipov MM. Oncologic outcomes of pelvic bone sarcomas surgical. Int J Health Sci. 2021;5(3):252-259. https://doi.org/10.53730/ijhs.v5n3.1467Search in Google Scholar

Navruzov SN, Polatova DSh, Gafoor-Akhunov MA, Gabdikarimov KH. The value of marker proteins p53, bcl-2, Ki-67 in predicting the effectiveness of treatment for osteogenic sarcoma of tubular bones. Vopr Onkol. 2012;58(5):691-693.Search in Google Scholar

Das S, Jhingran R, Bains VK, Madan R, Srivastava R, Rizvi I. Socket preservation by beta-tri-calcium phosphate with collagen compared to platelet-rich fibrin: A clinico-radiographic study. Eur J Dent. 2016;10(2):264-276. https://doi.org/10.4103/1305-7456.178298.Search in Google Scholar

Sakibaev KS, Nikityuk DB, Alekseyeva NT, Klochkova SV, Tashmatova NM. Characteristics of muscle mass in women of different constitutions. Res J Pharm Technol. 2019;12(12):6193-7.Search in Google Scholar

Takahashi Y, Marukawa E, Omura K. 2013. Application of a new material (ß-TCP/collagen composites) in extraction socket preservation. Int J Oral Maxillofac Implants. 2013;28(2):444-452. https://doi.org/10.11607/jomi.2794Search in Google Scholar

Gadipelly S, Sultana S, Venkatesh VV, Praveen P. Comparative Radiological Analysis of Efficacy of Beta-tricalcium Phosphate and Beta-tricalciumPhosphate with Platelet-rich Fibrin in MaxillarySinus Augmentation – A Clinical Study. Indian J Dent Adv. 2019; 10(4):171-175. https://doi.org/10.5866/2018.10.10171Search in Google Scholar

Elmohandes W. Evaluation of beta tricalcium phosphate mixed with platelet rich fibrin for rehabilitation of atrophic maxilla with implant installation. J Oral Maxillofac. Surg. 2013;42(10):1261. https://doi.org/10.1016/j.ijom.2013.07.303Search in Google Scholar

Alan H, Kavak G, Nergiz Y, Tunik S, Yavuz I. Comparative Investigation of The Effects of Platelet-Rich Plasma in Sinus Lifting. IAMR. 2015;7(2):1-12.Search in Google Scholar

Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun’s platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: a new grafting protocol. Implant Dent. 2009;18(2):102-111. https://doi.org/10.1097/ID.0b013e318198cfD0Search in Google Scholar

Dmytriiev D, Dmytriiev K, Stoliarchuk O, Semenenko A. Multiple organ dysfunction syndrome: What do we know about pain management? A narrative review. Anaesth Pain Intensive Care. 2019;23(1):84-91.Search in Google Scholar

Serniak YP, Sagalevych AI, Frolov OS, Serniak PY, Kryvopustov MS. Extraperitoneoscopic radical prostatectomy after pelvic sugery procedures. Wiad Lek. 2020;73(6):1093-1096.Search in Google Scholar

Peleg M, Garg AK, Mazor Z. Predictability of simultaneous implant placement in the severely atrophic posterior maxilla. Int J Oral Maxillofac Implants. 2006;21(1):94-102.Search in Google Scholar

Barhate UH, Mangaraj M, Jena AK, Sharan J. Applications of Platelet Rich Fibrin in Dental Surgery. Trends Biomater Artif Organs. 2021;35(2):203-213.Search in Google Scholar

Simon BI, Zatcoff AL, Kong JJ, O’Connell SM. Clinical and histological comparison of extraction socket healing following the use of autologous platelet-rich fibrin matrix (PRFM) to ridge preservation procedures emploting demineralized freeze-dried bone allograft material and membrane. Open Dent J. 2009;3:92-99. https://doi.org/10.2174/1874210600903010092Search in Google Scholar

Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):299-303. https://doi.org/10.1016/j.tripleo.2005.07.012Search in Google Scholar

Gupta SJ, Jhingran R, Gupta V, Bains VK, Madan R, Rizvi I. Efficacy of platelet-rich fibrin vs. enamel matrix derivative in the treatment of periodontal intrabony defects. J Int Acad Periodontol. 2014;16(3):86-96.Search in Google Scholar

Mathur A, Bains VK, Gupta V, Jhingran R, Singh GP. Evaluation of intrabony defects treated with platelet-rich fibrin or autogenous bone graft. Eur J Dent. 2015;9(1):100-108. https://doi.org/10.4103/1305-7456.149653Search in Google Scholar

Gupta V, Bains VK, Singh GP, Mathur A, Bains R. Regenerative potential of platelet rich fibrin in dentistry: literature review. AJOHAS. 2011;1(1):22-28.Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics