Machine Learning and Reinforcement Learning-Driven Optimization of Carbon Capture and Storage Processes and Their Environmental Impact Assessment
11 avr. 2025
À propos de cet article
Publié en ligne: 11 avr. 2025
Reçu: 04 nov. 2024
Accepté: 26 févr. 2025
DOI: https://doi.org/10.2478/amns-2025-0841
Mots clés
© 2025 Xihan Wang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Comparison of Optimization Performance in CCS Process
Method | CO2 Capture Efficiency (%) | Energy Consumption (MJ/ton CO2) |
---|---|---|
88.2 | 3.56 | |
90.3 | 3.24 | |
92.1 | 3.15 |
Comparison of Predictive Performance for CO2 Capture Efficiency
Model | MAE | RMSE | |
---|---|---|---|
SVR | 2.31 | 3.85 | 0.79 |
RF | 1.98 | 3.21 | 0.85 |
DNN | 1.74 | 2.92 | 0.88 |
GBDT | 1.56 | 2.67 | 0.91 |
Hybrid (GBDT + DNN) | 1.32 | 2.34 | 0.94 |
Comparison of Computational Efficiency
Method | Execution Time per Step (ms) | Total Optimization Time (s) |
---|---|---|
5.6 | 0.56 | |
74.2 | 7.42 | |
52.7 | 5.27 |