Machine Learning and Reinforcement Learning-Driven Optimization of Carbon Capture and Storage Processes and Their Environmental Impact Assessment
11. Apr. 2025
Über diesen Artikel
Online veröffentlicht: 11. Apr. 2025
Eingereicht: 04. Nov. 2024
Akzeptiert: 26. Feb. 2025
DOI: https://doi.org/10.2478/amns-2025-0841
Schlüsselwörter
© 2025 Xihan Wang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Comparison of Optimization Performance in CCS Process
Method | CO2 Capture Efficiency (%) | Energy Consumption (MJ/ton CO2) |
---|---|---|
88.2 | 3.56 | |
90.3 | 3.24 | |
92.1 | 3.15 |
Comparison of Predictive Performance for CO2 Capture Efficiency
Model | MAE | RMSE | |
---|---|---|---|
SVR | 2.31 | 3.85 | 0.79 |
RF | 1.98 | 3.21 | 0.85 |
DNN | 1.74 | 2.92 | 0.88 |
GBDT | 1.56 | 2.67 | 0.91 |
Hybrid (GBDT + DNN) | 1.32 | 2.34 | 0.94 |
Comparison of Computational Efficiency
Method | Execution Time per Step (ms) | Total Optimization Time (s) |
---|---|---|
5.6 | 0.56 | |
74.2 | 7.42 | |
52.7 | 5.27 |