Machine Learning and Reinforcement Learning-Driven Optimization of Carbon Capture and Storage Processes and Their Environmental Impact Assessment
11 abr 2025
Acerca de este artículo
Publicado en línea: 11 abr 2025
Recibido: 04 nov 2024
Aceptado: 26 feb 2025
DOI: https://doi.org/10.2478/amns-2025-0841
Palabras clave
© 2025 Xihan Wang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Comparison of Optimization Performance in CCS Process
Method | CO2 Capture Efficiency (%) | Energy Consumption (MJ/ton CO2) |
---|---|---|
88.2 | 3.56 | |
90.3 | 3.24 | |
92.1 | 3.15 |
Comparison of Predictive Performance for CO2 Capture Efficiency
Model | MAE | RMSE | |
---|---|---|---|
SVR | 2.31 | 3.85 | 0.79 |
RF | 1.98 | 3.21 | 0.85 |
DNN | 1.74 | 2.92 | 0.88 |
GBDT | 1.56 | 2.67 | 0.91 |
Hybrid (GBDT + DNN) | 1.32 | 2.34 | 0.94 |
Comparison of Computational Efficiency
Method | Execution Time per Step (ms) | Total Optimization Time (s) |
---|---|---|
5.6 | 0.56 | |
74.2 | 7.42 | |
52.7 | 5.27 |