Accès libre

Effect of Concrete Class, Maximum Aggregate Size and Specimen Size on the Compressive Strength of Cores and Cast Specimens

   | 30 déc. 2022
À propos de cet article

Citez

1. Amini K., Jalalpour M., Delatte N: Advancing concrete strength prediction using non-destructive testing: development and verification of a generalizable model. Construction and Building Materials 102 (2016) 762-768.10.1016/j.conbuildmat.2015.10.131 Search in Google Scholar

2. Fladr J., Bílý P: Specimen size effect on compressive and flexural strength of high-strength fibre-reinforced concrete containing coarse aggregate. Composites Part B-Engineering 138 (2018) 77-86.10.1016/j.compositesb.2017.11.032 Search in Google Scholar

3. Thermou GE., Hajirasouliha I: Compressive behaviour of concrete columns confined with steel-reinforced grout jackets. Composites Part B-Engineering 138 (2018) 222-231.10.1016/j.compositesb.2017.11.041 Search in Google Scholar

4. Indelicato F: A statistical method for the assessment of concrete strength through microcores. Materials and Structures 26 (1993) 261-267.10.1007/BF02472947 Search in Google Scholar

5. ASTM C42/C 42M-04. Standard test of obtaining and testing drilled cores and sawed beams of concrete, American Society for Testing and Materials. 2004. Search in Google Scholar

6. EN 13791:2007. Assessment of in-situ compressive strength in structures and precast concrete components, September 2007. Search in Google Scholar

7. ISO/DIS 7032. Cores of hardened concrete-Taking examination and testing in compression, Draft International Standard, International Organization of Standardization. 1983. Search in Google Scholar

8. DIN 1048 Teil 2. Prüfverfahren Ftir Beton. Bestimmung der Bruchfestigkeit von Festbeton in Bauwerken und Bauteilen, (Deutsches Institut Ftir Normung, Berlin. 1991. Search in Google Scholar

9. ACI Committee 301. Specification for Structural Concrete for Buildings. ACI 301-84 American Concrete Institute, Detroit. 1984. Search in Google Scholar

10. Seong-Tae Y., Eun-Ik Y., Joong-Cheol C: Effect of sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236 (2006) 116-127.10.1016/j.nucengdes.2005.08.004 Search in Google Scholar

11. Indelicaton F: Estimation of concrete cube strength by means of different diameter cores: A stastical approach. Materials and Structures 24 (1997) 131-138.10.1007/BF02486384 Search in Google Scholar

12. Nedjar B: Damage mechanics: first gradient theory and application to concrete. PhD Thesis. National School of Bridges and Roads. Paris. France. 1995. Search in Google Scholar

13. Alwash M., Breysse D., Sbartaï ZM: Nondestructive strength evaluation of concrete: analysis of some key factors using synthetic simulations. Construction and Building Materials 99 (2015) 235-245.10.1016/j.conbuildmat.2015.09.023 Search in Google Scholar

14. Ali-Benyahia K., Sbartai ZM., Breysse D., Kenai S., Ghrici M: Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: general statements based on a real case-study. Case Studies in Construction Materials 6 (2017) 106-119.10.1016/j.cscm.2017.01.004 Search in Google Scholar

15. Ali-Benyahia K., Sbartaï ZM., Breysse D., Ghrici M., Kenai S: Improvement of nondestructive assessment of on-site concrete strength: Influence of the selection process of cores location on the assessment quality for single and combined NDT techniques. Construction and Building Materials 195 (2019) 613-622.10.1016/j.conbuildmat.2018.10.032 Search in Google Scholar

16. Bungey JH: Determining concrete strength by using small diameter cores. Magazine of Concrete Research 31 (1979) 91-98.10.1680/macr.1979.31.107.91 Search in Google Scholar

17. Bocca P: Sul microcarotaggio - Basi teoriche e prime esperienze. La Prefabbricazione 22(1986) 651-664. Search in Google Scholar

18. Bocca P., Indelicato F: Size effects and statistical problems of microcores in the re-evaluation of existing structures. In Proceedings of DABI Symposium, Copenhagen, pp. 463-472. June 1988. Search in Google Scholar

19. Elices M., Rocco C.G: Effect of aggregate size on the fracture and mechanical properties of a simple concrete. Engineering Fracture Mechanics 10 (2008) 2-11. Search in Google Scholar

20. Sima J., Yangb K.H., Jeonc J.K: Influence of aggregate size on the compressive size effect according to different concrete types. Construction and Building Materials 44 (2013) 716-725.10.1016/j.conbuildmat.2013.03.066 Search in Google Scholar

21. Jin L., Yu WX., Du XL., Zhang S., Li D: Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. International Journal of Impact Engineering. 125 (2019) 1-12.10.1016/j.ijimpeng.2018.10.011 Search in Google Scholar

22. Wu ZY., Zhang JH., Yu HF., Ma HY: 3D mesoscopic investigation of the specimen aspect-ratio on coral aggregate concrete. Composites Part B-Engineering 198 (2020) 108025.10.1016/j.compositesb.2020.108025 Search in Google Scholar

23. Jin L., Yu WX., Du XL., Yang WX: Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: influence of aggregate content and maximum aggregate size Engineering. Fracture Mechanics 230 (2020) 106979.10.1016/j.engfracmech.2020.106979 Search in Google Scholar

24. Jin L., Yu WX., Du XL., Yang WX: Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete. Engineering Fracture Mechanics 209(2019) 317-332.10.1016/j.engfracmech.2019.01.035 Search in Google Scholar

25. Wang X., Zhang S., Wang C., Song R., Shang C, Fang X: Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading. Construction and Building Materials 165 (2018) 45-57.10.1016/j.conbuildmat.2018.01.033 Search in Google Scholar

26. Li M., Hao H., Shi Y., Hao Y: Specimen shape and size effects on the concrete compressive strength under static and dynamic tests. Construction and Building Materials 161 (2018) 84-93.10.1016/j.conbuildmat.2017.11.069 Search in Google Scholar

27. Zhangyu W., Jinhua Z., Hongfa Y., Haiyan M., Li C., Wen D., Yi H., Yadong Z: Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: A 3D mesoscopic study. Composites Part B-Engineering 200 (2020) 108299.10.1016/j.compositesb.2020.108299 Search in Google Scholar

28. BS 1881: Part 110, Part 110. Method for making test cylinders from fresh concrete, British Standard Institution, London. 1983. Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials