[
1. Vingsbo, O., Söderberg, S. On fretting maps. Wear 126 (1988) 131-147.10.1016/0043-1648(88)90134-2
]Search in Google Scholar
[
2. Abbasi, F., Majzoobi, G. H., Mendiguren, J. A review of the effects of cyclic contact loading on fretting fatigue behavior. Advances in Mechanical Engineering 12 (2020) 1687814020957175.
]Search in Google Scholar
[
3. Benhamena, A., Talha, A., Benseddiq, N., Amrouche, A., Mesmacque, G., Benguediab, M. Effect of clamping force on fretting fatigue behaviour of bolted assemblies: Case of couple steel–aluminium. Materials Science and Engineering: A 527 (2010) 6413-6421.
]Search in Google Scholar
[
4. Gu, H., Jiao, L., Yan, P., Ma, B., Chen, S., Feng, L., Wang, X. Crack behavior of Ti-6Al-4V alloy combined conformal contact fretting, non-conformal contact fretting and simple fatigue. International Journal of Fatigue 139 (2020) 105741.
]Search in Google Scholar
[
5. Hamadouche, F., Benzaama, H., Mokhtari, M., Tahar, M. A. Influence of contact parameters in fretting-fatigue contact 3D problems. Frattura ed Integrità Strutturale 15 (2021) 228-240.
]Search in Google Scholar
[
6. Benhamena, A., Amrouche, A., Talha, A.,Benseddiq, N. Effect of contact forces on fretting fatigue behavior of bolted plates: Numerical and experimental analysis. Tribology International 48 (2012) 237-245.
]Search in Google Scholar
[
7. Vázquez, J., Carpinteri, A., Bohórquez, L., Vantadori, S. Fretting fatigue investigation on Al 7075-T651 alloy: Experimental, analytical and numerical analysis. Tribology International 135 (2019) 478-487.
]Search in Google Scholar
[
8. Luke, M., Burdack, M., Moroz, S., Varfolomeev, I. Experimental and numerical study on crack initiation under fretting fatigue loading. International Journal of Fatigue 86 (2016) 24-33.
]Search in Google Scholar
[
9. Pinto, A. L., Cardoso, R. A., Talemi, R., Araújo, J. A. Fretting fatigue under variable amplitude loading considering partial and gross slip regimes: Numerical analysis. Tribology International 146 (2020) 106199.10.1016/j.triboint.2020.106199
]Search in Google Scholar
[
10. Cattaneo, C. Sul contatto de due corpielastici: Distribuzione locale deglisforzi. Rendicontidel l’Accademianazionale dei Lincei 6 (1938) 342-349.
]Search in Google Scholar
[
11. Mindlin, R. D. Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics 16 (1949) 259–268.10.1115/1.4009973
]Search in Google Scholar
[
12. Dhaka, P., Prakash, R. V. Effect of Contact Geometry on the Contact Stresses in a Flat with Round Edge Contact. Frattura ed Integrità Strutturale 13 (2019) 630-638.
]Search in Google Scholar
[
13. Zhang, T., McHugh, P. E., Leen, S. B. Computational study on the effect of contact geometry on fretting behaviour. Wear 271 (2011) 1462-1480.
]Search in Google Scholar
[
14. Chakherlou, T. N., Shahriary, P., Akbari, A. Experimental and numerical investigation on the fretting fatigue behavior of cold expanded Al-alloy 2024-T3 plates. Engineering Failure Analysis 123 (2021) 105324.
]Search in Google Scholar
[
15. Walvekar, A. A., Leonard, B. D., Sadeghi, F., Jalalahmadi, B., Bolander, N. An experimental study and fatigue damage model for fretting fatigue. Tribology International 79 (2014) 183-196.
]Search in Google Scholar
[
16. Vantadori, S., Zanichelli, A. Fretting-fatigue analysis of shot-peened aluminium and titanium test specimens. Fatigue & Fracture of Engineering Materials & Structures 44 (2021) 397-409.10.1111/ffe.13367
]Search in Google Scholar
[
17. Deng, Q., Yin, X., Wang, D., Wahab, M. A. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. International Journal of Fatigue 156 (2022) 106640.
]Search in Google Scholar
[
18. Zaleski, K, Skoczylas, A. Effect of slide burnishing on the surface layer and fatigue life of titanium alloy parts. Advances in Materials Science 19 (2019) 35-45.
]Search in Google Scholar
[
19. Dobromirski, J. M. Variables of fretting process: are there 50 of them? ASTM Special Technical Publication 1159 (1992) 60-60.
]Search in Google Scholar
[
20. Hertz, H. Über die Berührung fester elastischer Körper. Journal für die reine und ange wandte Mathematik 92 (1982) 156-171.
]Search in Google Scholar
[
21. Ruiz, C., Boddington, P. H. B., Chen, K. C. An investigation of fatigue and fretting in a dovetail joint. Experimental Mechanics 24 (1984) 208-217.
]Search in Google Scholar
[
22. ABAQUS/Standard User’s Manual, Version 6.14.
]Search in Google Scholar
[
23. Vázquez, J., Erena, D., Navarro, C., Domínguez, J. 3D contact effects in fretting fatigue tests. Theoretical and Applied Fracture Mechanics 118 (2020) 103260.10.1016/j.tafmec.2022.103260
]Search in Google Scholar
[
24. Kim, H. S., Mall, S., Ghoshal, A. Two-dimensional and three-dimensional finite element analysis of finite contact width on fretting fatigue. Materials Transactions (2011) 1012201243-1012201243.10.2320/matertrans.M2010268
]Search in Google Scholar
[
25. Namjoshi, S. A., Jain, V. K., Mall, S. Effects of shot-peening on fretting-fatigue behavior of Ti-6Al-4V. Journal of Engineering Materials and Technology 124 (2002) 222-228.
]Search in Google Scholar
[
26. Hojjati-Talemi, R., Wahab, M. A., De Pauw, J., De Baets, P. Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribology International 76 (2014) 73-91.
]Search in Google Scholar
[
27. Hojjati-Talemi, R., Wahab, M. A. Fretting fatigue crack initiation lifetime predictor tool: Using damage mechanics approach. Tribology International 60 (2013) 176-186.
]Search in Google Scholar
[
28. Hills, D. A and Nowell, D. Mechanics of fretting fatigue. Solid mechanics and its applications 30 (1994).10.1007/978-94-015-8281-0
]Search in Google Scholar