Accès libre

Enhancement Photocatalytic Activity of Mn Doped Cds/Zno Nanocomposites for the Degradation of Methylene Blue Under Solar Light Irradiation

À propos de cet article

Citez

1. Kazemi, H., Hakki, P., Shekari, A. Najafidoust, et al., Influence of Calcination Temperature and Operational Parameters on Fe-ZSM-5 Catalyst performance in Sonocatalytic Degradation of Phenol from wastewater, Journal of Water Environmental Nanotechnology, 6 (2), 150–163 (2021) 10.22090/JWENT.2021.02.005 Search in Google Scholar

2. Vallejo, W., Cantillo, A., Salazar, et al., Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation, Catalysts, 10, 528, 1-13(2020). https://doi.org/10.3390/catal1005052 Search in Google Scholar

3. Shen, Y.; Zhu, K.E.; He, D.et al., Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets: Nonradical mechanism and degradation pathway. J. Environ. Sci. (2022) 111, 351–366. https://doi.org/10.1016/j.jes.2021.04.01434949364 Search in Google Scholar

4. Prajapati, A.K.; Mondal, M.K. Development of CTAB modified ternary phase α-Fe2O3-Mn2O3-Mn3O4 nanocomposite as innovative super-adsorbent for Congo red dye adsorption, J. Environ. Chem. Eng. (2021) 9, 104827. DOI:10.1016/j.jece.2020.104827 Open DOISearch in Google Scholar

5. Nas, M.S. et al., Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nanoadsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems. J. Mol. Liq.. (2019), 296, 112100. https://doi.org/10.1016/j.molliq.2019.112100 Search in Google Scholar

6. Medhat, A.; et al., Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. (2021), 3, 10003710.1016/j.apsadv.2020.100037 Search in Google Scholar

7. Zhao, R.; et al., Highly flexible magnesium silicate nanofibrous membranes for effective removal of methylene blue from aqueous solution. Chem. Eng. J. (2019) 359, 1603–1616. https://doi.org/10.1016/j.cej.2018.11.011 Search in Google Scholar

8. Liu, C.; et al., Synergetic degradation of methylene blue through photocatalysis and fenton reaction on two-dimensional molybdenite-fe. J. Environ. Sci. (2022) 111, 11–23 https://doi.org/10.1016/j.jes.2021.03.00134949341 Search in Google Scholar

9. Nada, A.A.; et al., Mesoporous ZnFe2O4@TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J. Phys. Chem. C. (2017) 121 (44), 24669–24677. https://doi.org/10.1021/acs.jpcc.7b08567 Search in Google Scholar

10. Tantawy, H.R.; et al., Novel synthesis of bimetallic Ag–Cu nanocatalysts for rapid oxidative and reductive degradation of anionic and cationic dyes. Appl. Surf. Sci. Adv. (2021) 3, 100056. https://doi.org/10.1016/j.apsadv.2021.100056 Search in Google Scholar

11. El-Maghrabi, H.H.; Ali, H.R.; Younis, S.A. Construction of a new ternary α-MoO3–WO3/CdS solar nanophotocatalyst towards clean water and hydrogen production from artificial wastewater using optimal design methodology. RSC Adv. (2017) 7 (8), 4409–442. https://doi.org/10.1039/C6RA25146C Search in Google Scholar

12. Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.H.; et al., Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Proc. Saf. Environ. Prot. (2020) 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034 Search in Google Scholar

13. Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. (2016) 23, 25485–2549310.1007/s11356-016-7750-627704379 Search in Google Scholar

14. Chen, X.; Wu, Z.; Liu, D.; et al., Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. (2017) 12 (143), 1–1010.1186/s11671-017-1904-4531993828235375 Search in Google Scholar

15. Fujishima, A.; Xintong, Z.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. (2008) 63 (12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001 Search in Google Scholar

16. Su, B.; Zhong, M.; Han, L.; et al., Eco-friendly preparation of hierarchically selfassembly porous ZnO nanosheets for enhanced photocatalytic performance, Mater. Res. Bull. (2020) 124 110777–110781. https://doi.org/10.1016/j.materresbull.2020.110777 Search in Google Scholar

17. Serr‘a, A.; Pip, P.; Gomez, E.; et al., Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins, Appl. Catal. B (2020) 268 118745. https://doi.org/10.1016/j.apcatb.2020.118745 Search in Google Scholar

18. Qiu, J.; Li, M.; Wan, Y. et al., One-pot fabrication of CdxZn1-xS/ZnO nanohybrid using mixed sulfur sources for photocatalysis, Mater. Res. Bull. (2020) 125 110776–110782. https://doi.org/10.1016/j.materresbull.2020.110776 Search in Google Scholar

19. Wang, L.; Muhammed, M. Synthesis of zinc oxide nanoparticles with controlled morphology. J. Mater. Chem. 1999, 9, 2871–2878 Search in Google Scholar

20. Bahnemann, D.W.; Kormann, C.; Hoffmann, M.R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789–3798 Search in Google Scholar

21. Zhang, J.; Sun, L.D. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177 Search in Google Scholar

22. Chen, W.; Caia, W.; Zhangb, L.; Wanga, G.; Zhanga, L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J. Colloid Interface Sci. 2001, 238, 291–295 Search in Google Scholar

23. Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials 2020, 10, 108610.3390/nano10061086735322532486522 Search in Google Scholar

24. Ali, N. M., Kareem, A. A. Ionic conductivity enhancement for PVA/20wt.% CuSO4 gel polymer electrolyte by using glycerin Chalcogenide Lett. 19, 3, 2022, 217 – 22510.15251/CL.2022.193.217 Search in Google Scholar

25. Kareem, A. A., Rasheed, H. K., Nasir, E. M. Influence methods of preparation on the thermal stability of polyimide/silica dust. Polym. Bull. 2021 1-1010.1007/s00289-021-03830-7 Search in Google Scholar

26. Aseel A Kareem, Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites Adv. Compos. Lett. 29: 1–6 202010.1177/2633366X19894598 Search in Google Scholar

27. Li, Y.-Q.; Fu, S.-Y.; Mai, Y.-W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer (2006) 47 (6), 2127–2132. https://doi.org/10.1016/j.polymer.2006.01.071 Search in Google Scholar

28. Thi, V.H.T.; Lee, B.-K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hard Mater. (2017) 324, 329–339. https://doi.org/10.1016/j.jhazmat.2016.10.06627810327 Search in Google Scholar

29. Akhundi, A.; Habibi-Yangjeh, A. Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Mater. Chem. Phys. (2016) 174, 59–69. https://doi.org/10.1016/j.matchemphys.2016.02.052 Search in Google Scholar

30. Zirak, M.; Moradlou, O.; Bayati, M. et al., On the growth and photocatalytic activity of the vertically aligned ZnO nanorods grafted by CdS shells, Appl. Surf. Sci. (2013) 273 391-398. https://doi.org/10.1016/j.apsusc.2013.02.050 Search in Google Scholar

31. Khanchandani, S.; Kundu, S.; Patra, A. et al., Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods, J. of Phys. Chem. C. (2012) 116, 23653-23662. https://doi.org/10.1021/jp3083419 Search in Google Scholar

32. Gao, P.; Liu, J.; Zhang, T. et al., Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation, J. Hazard. Mater. (2012) 229–230, 209-216. DOI : 10.1016/j.jhazmat.2012.05.09922717065 Open DOISearch in Google Scholar

33. Zirak, M.; Akhavan, O.; Moradlou, O. Vertically aligned ZnO@ CdS nanorod heterostructures for visible light photoinactivation of bacteria, J. Alloys Compd. (2014) 590, 507-513. https://doi.org/10.1016/j.jallcom.2013.12.158 Search in Google Scholar

34. Jana, T.; Pal, A.; Chatterjee, K. Self assembled flower like CdS–ZnO nanocomposite and its photo catalytic activity, J. Alloys Compd. (2014) 583, 510-515. https://doi.org/10.1016/j.jallcom.2013.08.184 Search in Google Scholar

35. Yeb, W.; Jianga, Y.; Liua, Q. et al., The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity, J. Alloys Compd. (2021) 891, 161898. https://doi.org/10.1016/j.jallcom.2021.161898 Search in Google Scholar

36. Kumaria, V.; Yadava, S.; Mittala, A. et al., Surface Plasmon response of Pd deposited ZnO/CuO nanostructures with enhanced photocatalytic efficacy towards the degradation of organic pollutants, Inorg. Chem. Commun. (2020) 121, 108241. https://doi.org/10.1016/j.inoche.2020.108241 Search in Google Scholar

37. Zhang, P.; Su, Q.; Han, L. et al., Facile fabrication of magnetic Ag/ZnO/Fe3O4 composite and the photocatalytic performance under simulated sunlight irradiation, Molecular Catal. (2021) 508 111606. https://doi.org/10.1016/j.mcat.2021.111606 Search in Google Scholar

38. Barman, J.; Das, A.; Banik, B. et al., Optimizing ZnO/CdS Nano Composite Controlled by Fe Doping Towards Efficiency in Water Treatment and Antimicrobial Activity, Curr. World Environ. (2021) 16(3). http://dx.doi.org/10.12944/CWE.16.3.610.12944/CWE.16.3.6 Search in Google Scholar

39. Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel CuO/TiO2/PANI nanocomposite: Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation, J. Photochem. Photobiol. A (2020)11303. https://doi.org/10.1016/j.jphotochem.2020.113038 Search in Google Scholar

40. Shafi, A.; Ahmad, N.; Sultana, S.; Sabir, S.; and Khan, M. Z. Ag2S-Sensitized NiO−ZnO Heterostructures with Enhanced Visible Light Photocatalytic Activity and Acetone Sensing Property, ACS Omega. (2019) 4, 12905−12918 https://doi.org/10.1021/acsomega.9b01261668203731460417 Search in Google Scholar

41. Mohsin J Muhammad A Q. Sammia S. Hashem O. Alsaabb and Salma A. Highly efficient visible light active Cu–ZnO/S-gC3N4 nanocomposites for efficient photocatalytic degradation of organic pollutants, RSC Adv., 2021, 11, 37254–3726710.1039/D1RA07203J Search in Google Scholar

42. Tian, J. Liu, Q. Ge, C. Xing, Z. Asiri, A. M. Al-Youbi, A. O.; Sun, X., Ultrathin Graphitic Carbon Nitride Nanosheets: A Low-Cost, Green, and Highly Efficient Electrocatalyst Toward the Reduction of Hydrogen Peroxide and its Glucose Biosensing Application. Nanoscale 2013;5: 8921.10.1039/c3nr02031b23934305 Search in Google Scholar

43. Wang, W.; Zhang, D.; Ji, Z. et al., High efficiency photocatalytic degradation of indoor formaldehyde with silver-doped ZnO/g-C3N4 composite catalyst under the synergistic effect of silver plasma effect and heterojunction, Optic Mater. (2021) 111, 110721. https://doi.org/10.1016/j.optmat.2020.110721 Search in Google Scholar

44. Pranesh Shubha, J.; Adil, S. F.; Khan, M. et al., Facile Fabrication of a ZnO/Eu2O3/NiO-Based Ternary Heterostructure Nanophotocatalyst and Its Application for the Degradation of Methylene Blue, ACS Omega. (2021) 6, 3866−3874. https://doi.org/10.1021/acsomega.0c05670787686533585765 Search in Google Scholar

45. Toledo Camacho, S.Y.; Rey, A.; Hernández-Alonso, M.D. et al., Pd/TiO2-WO3 photocatalysts for hydrogen generation from water-methanol mixtures, Appl. Surf. Sci. (2018) 455, 570–58010.1016/j.apsusc.2018.05.122 Search in Google Scholar

46. Kumari, V.; Kumar, N.; Yadav, S. et al., Novel mixed metal oxide (ZnO.La2O3.CeO2) synthesized via hydrothermal and solution combustion process – a comparative study and their photocatalytic properties, Mater. Today: Proc. (2019) 19, 650–657. https://doi.org/10.1016/j.matpr.2019.07.748 Search in Google Scholar

47. Kumaria, V.; Yadava, S.; Mittala, A. Surface Plasmon response of Pd deposited ZnO/CuO nanostructures with enhanced photocatalytic efficacy towards the degradation of organic pollutants, Inorg. Chem. Commun. (2020) 121, 108241. https://doi.org/10.1016/j.inoche.2020.108241 Search in Google Scholar

48. Saravanakumar, K.; Karthik, R.; Chen, S.-M. et al., Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification, J. Colloid Interface Sci. (2017) 504, 514–526. DOI: 10.1016/j.jcis.2017.06.00328605715 Open DOISearch in Google Scholar

49. Samsudin, M. F. R. et al. Exploring the role of electron-hole scavengers on optimizing the photocatalytic performance of BiVO4. Mater Today: Proc. (2018) 5(10, Part 2), 21703-9 DOI:10.1016/j.matpr.2018.07.022 Open DOISearch in Google Scholar

50. Eskizeybek, V.; Sarı, F.; Gülce, H.; Gülce, A.; Avcı, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B Environ. 2012, 119–120, 197–206. Compare10.1016/j.apcatb.2012.02.034 Search in Google Scholar

51. Muna A. Abu-Dalo, Saja A. Al-Rosan and Borhan A. Albiss Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures Polymers 2021, 13, 345110.3390/polym13193451851255334641266 Search in Google Scholar

52. Biswal, H.J.; Yadav, A.; Vundavilli, P.R.; Gupta, A. High aspect ZnO nanorod growth over electrodeposited tubes for photocatalytic degradation of EtBr dye. RSC Adv. 2021, 11, 1623–1634. Search in Google Scholar

53. Nadeem, M.S.; Munawar, T.; Mukhtar, F.; Rahman, M.N.U.; Riaz, M.; Iqbal, F. Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram. Int. 2021, 47, 11109–11121. Search in Google Scholar

54. Liu, W.; Cai, J.; Li, Z. Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis, ACS Sustain. Chem. Eng. (2015) 3, 277–282 https://doi.org/10.1021/sc5006473. Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials