Accès libre

Preparation and Evaluation of Conductive Polymeric Composite from Metals Alloys and Graphene to Be Future Flexible Antenna Device

À propos de cet article

Citez

1. Zheng, J., Juha. A., Asko S., Makela T., Ari A., and Raisanen A. V. (2018): Roll-to-roll reverse offset printing of millimeter-wave transmission lines and antennas on flexible substrates. 12th European Conference on Antennas and Propagation (EuCAP 2018), 84-4. Search in Google Scholar

2. Subramanian, V. (2005). Progress toward development of all-printed RFID tags: materials, processes, and devices. Proceedings of the IEEE 93.7 1330-1338.10.1109/JPROC.2005.850305 Search in Google Scholar

3. Zhan, Y., Yongfeng, M & Lirong, Z (2014). Materials capability and device performance in flexible electronics for the Internet of Things. Journal of Materials Chemistry C 2 (7) 1220-1232.10.1039/C3TC31765J Search in Google Scholar

4. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., & Shen, G. (2014). Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 26(28), 4763-4782.10.1002/adma.20140091024913891 Search in Google Scholar

5. Tobjörk, D., & Österbacka, R. (2011). Paper electronics. Advanced Materials, 23(17), 1935-1961.10.1002/adma.20100469221433116 Search in Google Scholar

6. Ranasingha, O. K., Luce, A., Strack, G., Hardie, C., Piro, Y., Haghzadeh, M., & Akyurtlu, A. (2020). Selective laser sintering of conductive patterns on a novel silver–barium strontium titanate composite material. Flexible and Printed Electronics, 5(4), 045007.10.1088/2058-8585/abcc78 Search in Google Scholar

7. Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: an emerging electronic material. Advanced Materials, 24(43), 5782-5825.10.1002/adma.20120148222930422 Search in Google Scholar

8. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., ... & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563-568.10.1038/nnano.2008.21518772919 Search in Google Scholar

9. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. ACS Nano, 6(4), 2992-3006.10.1021/nn204460922449258 Search in Google Scholar

10. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7(11), 3499-3503.10.1021/nl072090c17944526 Search in Google Scholar

11. Mao, S., Pu, H., & Chen, J. (2012). Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2(7), 2643-2662.10.1039/c2ra00663d Search in Google Scholar

12. Ciesielski, A., & Samori, P. (2014). Graphene via sonication-assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398.10.1039/C3CS60217F Search in Google Scholar

13. Mayyas, M., Li, H., Kumar, P., Ghasemian, M. B., Yang, J., Wang, Y., & Kalantar-Zadeh, K. (2020). Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 32(29), 2001997.10.1002/adma.20200199732510699 Search in Google Scholar

14. Shaltout, A. M., Kinsey, N., Kim, J., Chandrasekar, R., Ndukaife, J. C., Boltasseva, A., & Shalaev, V. M. (2016). Development of optical metasurfaces: emerging concepts and new materials. Proceedings of the IEEE, 104(12), 2270-2287.10.1109/JPROC.2016.2590882 Search in Google Scholar

15. Peng, Y., Liu, H., Xin, Y., & Zhang, J. (2021). Rheological conductor from liquid metal-polymer composites. Matter, 4(9), 3001-3014.10.1016/j.matt.2021.06.046 Search in Google Scholar

16. Chujo, Y., & Tanaka, K. (2015). New polymeric materials based on element blocks. Bulletin of the Chemical Society of Japan, 88(5), 633-643.10.1246/bcsj.20150081 Search in Google Scholar

17. Beadie, G., Sandrock, M. L., Wiggins, M. J., Lepkowicz, R. S., Shirk, J. S., Ponting, M., & Baer, E. (2008). Tunable polymer lens. Optics Express, 16(16), 11847-11857.10.1364/OE.16.011847 Search in Google Scholar

18. Santiago-Alvarado, A., Vazquez-Montiel, S., Gonzalez-Garcia, J., Iturbide-Jimenez, F., Cruz-Felix, A. S., Cruz-Martinez, V., & Castro-Gonzalez, G. (2015). Advances in the development of tunable lenses in Mexico. Photonics Letters of Poland, 7(1), 20-22.10.4302/plp.2015.1.08 Search in Google Scholar

19. Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design, and applications. Smart Materials and Structures, 10(6), 1115.10.1088/0964-1726/10/6/301 Search in Google Scholar

20. Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. Journal of Applied Polymer Science, 131(22).10.1002/app.41050 Search in Google Scholar

21. Liu, M., Sun, J., & Chen, Q. (2009). Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sensors and Actuators A: Physical, 151(1), 42-45.10.1016/j.sna.2009.02.016 Search in Google Scholar

22. Prajzler, V., Nekvindova, P., Spirkova, J., & Novotny, M. (2017). The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. Journal of Materials Science: Materials in Electronics, 28(11), 7951-7961. Search in Google Scholar

23. Martinček, I., Turek, I., & Tarjányi, N. (2014). Effect of boundary on refractive index of PDMS. Optical Materials Express, 4(10), 1997-2005.10.1364/OME.4.001997 Search in Google Scholar

24. Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue Luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572.10.1002/adfm.200901884 Search in Google Scholar

25. Devan, R. S., Patil, R. A., Lin, J. H., & Ma, Y. R. (2012). One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials, 22(16), 3326-3370.10.1002/adfm.201201008 Search in Google Scholar

26. Mishra, Y. K., Kaps, S., Schuchardt, A., Paulowicz, I., Jin, X., Gedamu, D., & Adelung, R. (2014). Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder and Particle Journal, 31, 92-110.10.14356/kona.2014015 Search in Google Scholar

27. Dai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42.10.1021/ar300122m23030244 Search in Google Scholar

28. Mannov, E., Schmutzler, H., Chandrasekaran, S., Viets, C., Buschhorn, S., Tölle, F., & Schulte, K. (2013). Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Composites Science and Technology, 87, 36-41.10.1016/j.compscitech.2013.07.019 Search in Google Scholar

29. Raquez, J. M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.10.1016/j.progpolymsci.2013.05.014 Search in Google Scholar

30. Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S., & Liao, K. (2003). Physical interactions at carbon nanotube-polymer interface. Polymer, 44(25), 7757-7764.10.1016/j.polymer.2003.10.011 Search in Google Scholar

31. Giannelis, E. P. (1996). Polymer layered silicate nanocomposites. Advanced Materials, 8(1), 29-35.10.1002/adma.19960080104 Search in Google Scholar

32. Lipatov, I. S., & Lipatov, Y. S. (1995). Polymer reinforcement. ChemTec Publishing. Search in Google Scholar

33. Daniel, I. M., Ishai, O., Daniel, I. M., & Daniel, I. (2006). Engineering mechanics of composite materials (vol. 1994). New York: Oxford University Press Search in Google Scholar

34. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.10.1016/j.compositesb.2008.01.002 Search in Google Scholar

35. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125.10.1016/j.compscitech.2005.01.014 Search in Google Scholar

36. Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., & Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549.10.1016/j.polymertesting.2020.106549 Search in Google Scholar

37. Petrović, Z. S., & Farris, R. (1995). Structure–property relationship in fibers spun from poly (ethylene terephthalate) and liquid crystalline polymer blends. II. Effect of spinning temperature on fiber properties. Journal of Applied Polymer Science, 58(8), 1349-1363. Search in Google Scholar

38. Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204.10.1016/j.polymer.2008.04.017 Search in Google Scholar

39. Lachman, N., Wiesel, E., de Villoria, R. G., Wardle, B. L., & Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology, 72(12), 1416-1422.10.1016/j.compscitech.2012.05.015 Search in Google Scholar

40. Pötschke, P., Krause, B., Buschhorn, S. T., Köpke, U., Müller, M. T., Villmow, T., & Schulte, K. (2013). Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Composites Science and Technology, 74, 78-84.10.1016/j.compscitech.2012.10.010 Search in Google Scholar

41. Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198.10.1016/j.progpolymsci.2008.07.008 Search in Google Scholar

42. Breuer, O., & Sundararaj, U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Composites, 25(6), 630-645.10.1002/pc.20058 Search in Google Scholar

43. Frank, O., Tsoukleri, G., Riaz, I., Papagelis, K., Parthenios, J., Ferrari, A. C., ... & Galiotis, C. (2011). Development of a universal stress sensor for graphene and carbon fibers. Nature Communications, 2(1), 1-7.10.1038/ncomms1247 Search in Google Scholar

44. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. Search in Google Scholar

45. Hempel, M., Nezich, D., Kong, J., & Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 12(11), 5714-5718.10.1021/nl302959a23045955 Search in Google Scholar

46. Smith, A. D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A. C., Sterner, M., & Lemme, M. C. (2013). Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Letters, 13(7), 3237-3242.10.1021/nl401352k23786215 Search in Google Scholar

47. Zhu, Shou-En, et al. Graphene based piezoresistive pressure sensor. Applied Physics Letters 102.16 2013 161904..10.1063/1.4802799 Search in Google Scholar

48. Liu, H., Xin, Y., Bisoyi, H. K., Peng, Y., Zhang, J., & Li, Q. (2021). Stimuli-Driven Insulator–Conductor Transition in a Flexible Polymer Composite Enabled by Biphasic Liquid Metal. Advanced Materials, 2104634.10.1002/adma.20210463434541730 Search in Google Scholar

49. Yao, H. B., Ge, J., Wang, C. F., Wang, X., Hu, W., Zheng, Z. J., & Yu, S. H. (2013). A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25(46), 6692-6698.10.1002/adma.20130304124027108 Search in Google Scholar

50. Bae, S. H., Kahya, O., Sharma, B. K., Kwon, J., Cho, H. J., Ozyilmaz, B., & Ahn, J. H. (2013). Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 7(4), 3130-3138.10.1021/nn400848j23448089 Search in Google Scholar

51. Fu, X. W., Liao, Z. M., Zhou, J. X., Zhou, Y. B., Wu, H. C., Zhang, R., ... & Yu, D. (2011). Strain dependent resistance in chemical vapor deposition grown graphene. Applied Physics Letters, 99(21), 213107.10.1063/1.3663969 Search in Google Scholar

52. Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E., & Zhang, G. (2011). Super-elastic graphene ripples for flexible strain sensors. ACS Nano, 5(5), 3645-3650.10.1021/nn103523t21452882 Search in Google Scholar

53. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.10.1002/adfm.201504755 Search in Google Scholar

54. So, J. H., & Dickey, M. D. (2011). Inherently aligned microfluidic electrodes composed of liquid metal. Lab on a Chip, 11(5), 905-911.10.1039/c0lc00501k21264405 Search in Google Scholar

55. Kim, H. J., Son, C., & Ziaie, B. (2008). A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters, 92(1), 011904.10.1063/1.2829595 Search in Google Scholar

56. Hu, H., Shaikh, K., & Liu, C. (2007, October). Super flexible sensor skin using liquid metal as interconnect. In SENSORS, 2007 IEEE (pp. 815-817).10.1109/ICSENS.2007.4388525 Search in Google Scholar

57. Yang, H., Lightner, C. R., & Dong, L. (2012). Light-emitting coaxial nanofibers. ACS Nano, 6(1), 622-628.10.1021/nn204055t22196130 Search in Google Scholar

58. Jobs, M., Hjort, K., Rydberg, A., & Wu, Z. (2013). A tunable spherical cap microfluidic electrically small antenna. Small, 9(19), 3230-3234.10.1002/smll.20130007023606457 Search in Google Scholar

59. Liu, P., Yang, S., Wang, X., Yang, M., Song, J., & Dong, L. (2016). Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas and Wireless Propagation Letters, 16, 66-69. Search in Google Scholar

60. Yang, S., Liu, P., Yang, M., Wang, Q., Song, J., & Dong, L. (2016). From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Scientific Reports, 6(1), 1-8.10.1038/srep21921476329626902969 Search in Google Scholar

61. Hernandez, G. A., Martinez, D., Ellis, C., Palmer, M., & Hamilton, M. C. (2013, May). Through Si vias using liquid metal conductors for re-workable 3D electronics. In 2013 IEEE 63rd Electronic Components and Technology Conference (pp. 1401-1406).10.1109/ECTC.2013.6575756 Search in Google Scholar

62. Kramer, R. K., Majidi, C., & Wood, R. J. (2013). Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Advanced Functional Materials, 23(42), 5292-5296.10.1002/adfm.201203589 Search in Google Scholar

63. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451-10453.10.1073/pnas.0502848102118077716027370 Search in Google Scholar

64. Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805.10.1103/PhysRevLett.98.20680517677729 Search in Google Scholar

65. Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954.10.1103/PhysRevB.54.179549985930 Search in Google Scholar

66. van Gastel, R., N’Diaye, A. T., Wall, D., Coraux, J., Busse, C., Buckanie, N. M., ... & Poelsema, B. (2009). Selecting a single orientation for millimeter sized graphene sheets. Applied Physics Letters, 95(12), 121901.10.1063/1.3225554 Search in Google Scholar

67. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314. Search in Google Scholar

68. Yang, S., Wang, C., Ataca, C., Li, Y., Chen, H., Cai, H., & Tongay, S. (2016). Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure. ACS Applied Materials & Interfaces, 8(4), 2533-2539.10.1021/acsami.5b1000126796869 Search in Google Scholar

69. Wang, F., Wang, Z., Xu, K., Wang, F., Wang, Q., Huang, Y., & He, J. (2015). Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Letters, 15(11), 7558-7566.10.1021/acs.nanolett.5b0329126469092 Search in Google Scholar

70. Su, C., Zhao, X. (2021). A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime. Journal of Computational Physics, 428, 110064.10.1016/j.jcp.2020.110064 Search in Google Scholar

71. Shenoy, U. S., Gupta, U., Narang, D. S., Late, D. J., Waghmare, U. V., & Rao, C. N. R. (2016). Electronic structure and properties of layered gallium telluride. Chemical Physics Letters, 651, 148-154.10.1016/j.cplett.2016.03.045 Search in Google Scholar

72. Susoma, J., Karvonen, L., Säynätjoki, A., Mehravar, S., Norwood, R. A., Peyghambarian, N., ... & Riikonen, J. (2016). Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. Applied Physics Letters, 108(7), 073103.10.1063/1.4941998 Search in Google Scholar

73. Yang, S., Cai, H., Chen, B., Ko, C., Özçelik, V. O., Ogletree, D. F., & Tongay, S. (2017). Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale, 9(34), 12288-12294.10.1039/C7NR02397A Search in Google Scholar

74. French, S. J., SAUNDERS, D. J., & INGLE, G. W. (2002). The system gallium-indium. The Journal of Physical Chemistry, 42(2), 265-274.10.1021/j100897a011 Search in Google Scholar

75. Kim, T. W., Wang, G., Lee, H., & Lee, T. (2007). Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions. Nanotechnology, 18(31), 315204.10.1088/0957-4484/18/31/315204 Search in Google Scholar

76. Beebe, J. M., & Kushmerick, J. G. (2007). Nanoscale switch elements from self-assembled monolayers on silver. Applied Physics Letters, 90(8), 083117.10.1063/1.2696653 Search in Google Scholar

77. Al-Dhahebi, A. M., Gopinath, S. C. B., & Saheed, M. S. M. (2020). Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Convergence, 7(1), 1-2310.1186/s40580-020-00237-4741747132776254 Search in Google Scholar

78. Dickey, M. D., Chiechi, R. C., Larsen, R. J., Weiss, E. A., Weitz, D. A., & Whitesides, G. M. (2008). Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 18(7), 1097-1104.10.1002/adfm.200701216 Search in Google Scholar

79. Sargolzaeiaval, Y., Ramesh, V. P., Neumann, T. V., Miles, R., Dickey, M. D., & Öztürk, M. C. (2019). High thermal conductivity silicone elastomer doped with graphene nanoplatelets and eutectic gain liquid metal alloy. ECS Journal of Solid State Science and Technology, 8(6), P357.10.1149/2.0271906jss Search in Google Scholar

80. Neumann, T. V., Kara, B., Sargolzaeiaval, Y., Im, S., Ma, J., Yang, J., ... & Dickey, M. D. (2021). Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. Micromachines, 12(2), 146.10.3390/mi12020146791287533535606 Search in Google Scholar

81. Saborio, M. G., Cai, S., Tang, J., Ghasemian, M. B., Mayyas, M., Han, J., & Kalantar-Zadeh, K. (2020). Liquid Metal Droplet and Graphene Co-Fillers for Electrically Conductive Flexible Composites. Small, 16(12), 1903753.10.1002/smll.20190375331565857 Search in Google Scholar

82. Wang, T., Zhao, Q., Miao, Y., Ma, F., Xie, Y., & Jie, W. (2018). Lattice vibration of layered GaTe single crystals. Crystals, 8(2), 74.10.3390/cryst8020074 Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials