Acceso abierto

Preparation and Evaluation of Conductive Polymeric Composite from Metals Alloys and Graphene to Be Future Flexible Antenna Device


Cite

1. Zheng, J., Juha. A., Asko S., Makela T., Ari A., and Raisanen A. V. (2018): Roll-to-roll reverse offset printing of millimeter-wave transmission lines and antennas on flexible substrates. 12th European Conference on Antennas and Propagation (EuCAP 2018), 84-4. Search in Google Scholar

2. Subramanian, V. (2005). Progress toward development of all-printed RFID tags: materials, processes, and devices. Proceedings of the IEEE 93.7 1330-1338.10.1109/JPROC.2005.850305 Search in Google Scholar

3. Zhan, Y., Yongfeng, M & Lirong, Z (2014). Materials capability and device performance in flexible electronics for the Internet of Things. Journal of Materials Chemistry C 2 (7) 1220-1232.10.1039/C3TC31765J Search in Google Scholar

4. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y., & Shen, G. (2014). Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 26(28), 4763-4782.10.1002/adma.20140091024913891 Search in Google Scholar

5. Tobjörk, D., & Österbacka, R. (2011). Paper electronics. Advanced Materials, 23(17), 1935-1961.10.1002/adma.20100469221433116 Search in Google Scholar

6. Ranasingha, O. K., Luce, A., Strack, G., Hardie, C., Piro, Y., Haghzadeh, M., & Akyurtlu, A. (2020). Selective laser sintering of conductive patterns on a novel silver–barium strontium titanate composite material. Flexible and Printed Electronics, 5(4), 045007.10.1088/2058-8585/abcc78 Search in Google Scholar

7. Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: an emerging electronic material. Advanced Materials, 24(43), 5782-5825.10.1002/adma.20120148222930422 Search in Google Scholar

8. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., ... & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563-568.10.1038/nnano.2008.21518772919 Search in Google Scholar

9. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. ACS Nano, 6(4), 2992-3006.10.1021/nn204460922449258 Search in Google Scholar

10. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7(11), 3499-3503.10.1021/nl072090c17944526 Search in Google Scholar

11. Mao, S., Pu, H., & Chen, J. (2012). Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2(7), 2643-2662.10.1039/c2ra00663d Search in Google Scholar

12. Ciesielski, A., & Samori, P. (2014). Graphene via sonication-assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398.10.1039/C3CS60217F Search in Google Scholar

13. Mayyas, M., Li, H., Kumar, P., Ghasemian, M. B., Yang, J., Wang, Y., & Kalantar-Zadeh, K. (2020). Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 32(29), 2001997.10.1002/adma.20200199732510699 Search in Google Scholar

14. Shaltout, A. M., Kinsey, N., Kim, J., Chandrasekar, R., Ndukaife, J. C., Boltasseva, A., & Shalaev, V. M. (2016). Development of optical metasurfaces: emerging concepts and new materials. Proceedings of the IEEE, 104(12), 2270-2287.10.1109/JPROC.2016.2590882 Search in Google Scholar

15. Peng, Y., Liu, H., Xin, Y., & Zhang, J. (2021). Rheological conductor from liquid metal-polymer composites. Matter, 4(9), 3001-3014.10.1016/j.matt.2021.06.046 Search in Google Scholar

16. Chujo, Y., & Tanaka, K. (2015). New polymeric materials based on element blocks. Bulletin of the Chemical Society of Japan, 88(5), 633-643.10.1246/bcsj.20150081 Search in Google Scholar

17. Beadie, G., Sandrock, M. L., Wiggins, M. J., Lepkowicz, R. S., Shirk, J. S., Ponting, M., & Baer, E. (2008). Tunable polymer lens. Optics Express, 16(16), 11847-11857.10.1364/OE.16.011847 Search in Google Scholar

18. Santiago-Alvarado, A., Vazquez-Montiel, S., Gonzalez-Garcia, J., Iturbide-Jimenez, F., Cruz-Felix, A. S., Cruz-Martinez, V., & Castro-Gonzalez, G. (2015). Advances in the development of tunable lenses in Mexico. Photonics Letters of Poland, 7(1), 20-22.10.4302/plp.2015.1.08 Search in Google Scholar

19. Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design, and applications. Smart Materials and Structures, 10(6), 1115.10.1088/0964-1726/10/6/301 Search in Google Scholar

20. Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. Journal of Applied Polymer Science, 131(22).10.1002/app.41050 Search in Google Scholar

21. Liu, M., Sun, J., & Chen, Q. (2009). Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sensors and Actuators A: Physical, 151(1), 42-45.10.1016/j.sna.2009.02.016 Search in Google Scholar

22. Prajzler, V., Nekvindova, P., Spirkova, J., & Novotny, M. (2017). The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. Journal of Materials Science: Materials in Electronics, 28(11), 7951-7961. Search in Google Scholar

23. Martinček, I., Turek, I., & Tarjányi, N. (2014). Effect of boundary on refractive index of PDMS. Optical Materials Express, 4(10), 1997-2005.10.1364/OME.4.001997 Search in Google Scholar

24. Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue Luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572.10.1002/adfm.200901884 Search in Google Scholar

25. Devan, R. S., Patil, R. A., Lin, J. H., & Ma, Y. R. (2012). One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials, 22(16), 3326-3370.10.1002/adfm.201201008 Search in Google Scholar

26. Mishra, Y. K., Kaps, S., Schuchardt, A., Paulowicz, I., Jin, X., Gedamu, D., & Adelung, R. (2014). Versatile fabrication of complex shaped metal oxide nano-microstructures and their interconnected networks for multifunctional applications. KONA Powder and Particle Journal, 31, 92-110.10.14356/kona.2014015 Search in Google Scholar

27. Dai, L. (2013). Functionalization of graphene for efficient energy conversion and storage. Accounts of Chemical Research, 46(1), 31-42.10.1021/ar300122m23030244 Search in Google Scholar

28. Mannov, E., Schmutzler, H., Chandrasekaran, S., Viets, C., Buschhorn, S., Tölle, F., & Schulte, K. (2013). Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Composites Science and Technology, 87, 36-41.10.1016/j.compscitech.2013.07.019 Search in Google Scholar

29. Raquez, J. M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10-11), 1504-1542.10.1016/j.progpolymsci.2013.05.014 Search in Google Scholar

30. Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S., & Liao, K. (2003). Physical interactions at carbon nanotube-polymer interface. Polymer, 44(25), 7757-7764.10.1016/j.polymer.2003.10.011 Search in Google Scholar

31. Giannelis, E. P. (1996). Polymer layered silicate nanocomposites. Advanced Materials, 8(1), 29-35.10.1002/adma.19960080104 Search in Google Scholar

32. Lipatov, I. S., & Lipatov, Y. S. (1995). Polymer reinforcement. ChemTec Publishing. Search in Google Scholar

33. Daniel, I. M., Ishai, O., Daniel, I. M., & Daniel, I. (2006). Engineering mechanics of composite materials (vol. 1994). New York: Oxford University Press Search in Google Scholar

34. Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961.10.1016/j.compositesb.2008.01.002 Search in Google Scholar

35. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., & Schulte, K. (2006). Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 66(16), 3115-3125.10.1016/j.compscitech.2005.01.014 Search in Google Scholar

36. Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., & Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549.10.1016/j.polymertesting.2020.106549 Search in Google Scholar

37. Petrović, Z. S., & Farris, R. (1995). Structure–property relationship in fibers spun from poly (ethylene terephthalate) and liquid crystalline polymer blends. II. Effect of spinning temperature on fiber properties. Journal of Applied Polymer Science, 58(8), 1349-1363. Search in Google Scholar

38. Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204.10.1016/j.polymer.2008.04.017 Search in Google Scholar

39. Lachman, N., Wiesel, E., de Villoria, R. G., Wardle, B. L., & Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology, 72(12), 1416-1422.10.1016/j.compscitech.2012.05.015 Search in Google Scholar

40. Pötschke, P., Krause, B., Buschhorn, S. T., Köpke, U., Müller, M. T., Villmow, T., & Schulte, K. (2013). Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Composites Science and Technology, 74, 78-84.10.1016/j.compscitech.2012.10.010 Search in Google Scholar

41. Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198.10.1016/j.progpolymsci.2008.07.008 Search in Google Scholar

42. Breuer, O., & Sundararaj, U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Composites, 25(6), 630-645.10.1002/pc.20058 Search in Google Scholar

43. Frank, O., Tsoukleri, G., Riaz, I., Papagelis, K., Parthenios, J., Ferrari, A. C., ... & Galiotis, C. (2011). Development of a universal stress sensor for graphene and carbon fibers. Nature Communications, 2(1), 1-7.10.1038/ncomms1247 Search in Google Scholar

44. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. Search in Google Scholar

45. Hempel, M., Nezich, D., Kong, J., & Hofmann, M. (2012). A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 12(11), 5714-5718.10.1021/nl302959a23045955 Search in Google Scholar

46. Smith, A. D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A. C., Sterner, M., & Lemme, M. C. (2013). Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Letters, 13(7), 3237-3242.10.1021/nl401352k23786215 Search in Google Scholar

47. Zhu, Shou-En, et al. Graphene based piezoresistive pressure sensor. Applied Physics Letters 102.16 2013 161904..10.1063/1.4802799 Search in Google Scholar

48. Liu, H., Xin, Y., Bisoyi, H. K., Peng, Y., Zhang, J., & Li, Q. (2021). Stimuli-Driven Insulator–Conductor Transition in a Flexible Polymer Composite Enabled by Biphasic Liquid Metal. Advanced Materials, 2104634.10.1002/adma.20210463434541730 Search in Google Scholar

49. Yao, H. B., Ge, J., Wang, C. F., Wang, X., Hu, W., Zheng, Z. J., & Yu, S. H. (2013). A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25(46), 6692-6698.10.1002/adma.20130304124027108 Search in Google Scholar

50. Bae, S. H., Kahya, O., Sharma, B. K., Kwon, J., Cho, H. J., Ozyilmaz, B., & Ahn, J. H. (2013). Graphene-P (VDF-TrFE) multilayer film for flexible applications. ACS Nano, 7(4), 3130-3138.10.1021/nn400848j23448089 Search in Google Scholar

51. Fu, X. W., Liao, Z. M., Zhou, J. X., Zhou, Y. B., Wu, H. C., Zhang, R., ... & Yu, D. (2011). Strain dependent resistance in chemical vapor deposition grown graphene. Applied Physics Letters, 99(21), 213107.10.1063/1.3663969 Search in Google Scholar

52. Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E., & Zhang, G. (2011). Super-elastic graphene ripples for flexible strain sensors. ACS Nano, 5(5), 3645-3650.10.1021/nn103523t21452882 Search in Google Scholar

53. Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials, 26(11), 1678-1698.10.1002/adfm.201504755 Search in Google Scholar

54. So, J. H., & Dickey, M. D. (2011). Inherently aligned microfluidic electrodes composed of liquid metal. Lab on a Chip, 11(5), 905-911.10.1039/c0lc00501k21264405 Search in Google Scholar

55. Kim, H. J., Son, C., & Ziaie, B. (2008). A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters, 92(1), 011904.10.1063/1.2829595 Search in Google Scholar

56. Hu, H., Shaikh, K., & Liu, C. (2007, October). Super flexible sensor skin using liquid metal as interconnect. In SENSORS, 2007 IEEE (pp. 815-817).10.1109/ICSENS.2007.4388525 Search in Google Scholar

57. Yang, H., Lightner, C. R., & Dong, L. (2012). Light-emitting coaxial nanofibers. ACS Nano, 6(1), 622-628.10.1021/nn204055t22196130 Search in Google Scholar

58. Jobs, M., Hjort, K., Rydberg, A., & Wu, Z. (2013). A tunable spherical cap microfluidic electrically small antenna. Small, 9(19), 3230-3234.10.1002/smll.20130007023606457 Search in Google Scholar

59. Liu, P., Yang, S., Wang, X., Yang, M., Song, J., & Dong, L. (2016). Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas and Wireless Propagation Letters, 16, 66-69. Search in Google Scholar

60. Yang, S., Liu, P., Yang, M., Wang, Q., Song, J., & Dong, L. (2016). From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Scientific Reports, 6(1), 1-8.10.1038/srep21921476329626902969 Search in Google Scholar

61. Hernandez, G. A., Martinez, D., Ellis, C., Palmer, M., & Hamilton, M. C. (2013, May). Through Si vias using liquid metal conductors for re-workable 3D electronics. In 2013 IEEE 63rd Electronic Components and Technology Conference (pp. 1401-1406).10.1109/ECTC.2013.6575756 Search in Google Scholar

62. Kramer, R. K., Majidi, C., & Wood, R. J. (2013). Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Advanced Functional Materials, 23(42), 5292-5296.10.1002/adfm.201203589 Search in Google Scholar

63. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451-10453.10.1073/pnas.0502848102118077716027370 Search in Google Scholar

64. Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805.10.1103/PhysRevLett.98.20680517677729 Search in Google Scholar

65. Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996). Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54(24), 17954.10.1103/PhysRevB.54.179549985930 Search in Google Scholar

66. van Gastel, R., N’Diaye, A. T., Wall, D., Coraux, J., Busse, C., Buckanie, N. M., ... & Poelsema, B. (2009). Selecting a single orientation for millimeter sized graphene sheets. Applied Physics Letters, 95(12), 121901.10.1063/1.3225554 Search in Google Scholar

67. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314. Search in Google Scholar

68. Yang, S., Wang, C., Ataca, C., Li, Y., Chen, H., Cai, H., & Tongay, S. (2016). Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure. ACS Applied Materials & Interfaces, 8(4), 2533-2539.10.1021/acsami.5b1000126796869 Search in Google Scholar

69. Wang, F., Wang, Z., Xu, K., Wang, F., Wang, Q., Huang, Y., & He, J. (2015). Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Letters, 15(11), 7558-7566.10.1021/acs.nanolett.5b0329126469092 Search in Google Scholar

70. Su, C., Zhao, X. (2021). A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-plasma-frequency and subsonic limit regime. Journal of Computational Physics, 428, 110064.10.1016/j.jcp.2020.110064 Search in Google Scholar

71. Shenoy, U. S., Gupta, U., Narang, D. S., Late, D. J., Waghmare, U. V., & Rao, C. N. R. (2016). Electronic structure and properties of layered gallium telluride. Chemical Physics Letters, 651, 148-154.10.1016/j.cplett.2016.03.045 Search in Google Scholar

72. Susoma, J., Karvonen, L., Säynätjoki, A., Mehravar, S., Norwood, R. A., Peyghambarian, N., ... & Riikonen, J. (2016). Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. Applied Physics Letters, 108(7), 073103.10.1063/1.4941998 Search in Google Scholar

73. Yang, S., Cai, H., Chen, B., Ko, C., Özçelik, V. O., Ogletree, D. F., & Tongay, S. (2017). Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale, 9(34), 12288-12294.10.1039/C7NR02397A Search in Google Scholar

74. French, S. J., SAUNDERS, D. J., & INGLE, G. W. (2002). The system gallium-indium. The Journal of Physical Chemistry, 42(2), 265-274.10.1021/j100897a011 Search in Google Scholar

75. Kim, T. W., Wang, G., Lee, H., & Lee, T. (2007). Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions. Nanotechnology, 18(31), 315204.10.1088/0957-4484/18/31/315204 Search in Google Scholar

76. Beebe, J. M., & Kushmerick, J. G. (2007). Nanoscale switch elements from self-assembled monolayers on silver. Applied Physics Letters, 90(8), 083117.10.1063/1.2696653 Search in Google Scholar

77. Al-Dhahebi, A. M., Gopinath, S. C. B., & Saheed, M. S. M. (2020). Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Convergence, 7(1), 1-2310.1186/s40580-020-00237-4741747132776254 Search in Google Scholar

78. Dickey, M. D., Chiechi, R. C., Larsen, R. J., Weiss, E. A., Weitz, D. A., & Whitesides, G. M. (2008). Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 18(7), 1097-1104.10.1002/adfm.200701216 Search in Google Scholar

79. Sargolzaeiaval, Y., Ramesh, V. P., Neumann, T. V., Miles, R., Dickey, M. D., & Öztürk, M. C. (2019). High thermal conductivity silicone elastomer doped with graphene nanoplatelets and eutectic gain liquid metal alloy. ECS Journal of Solid State Science and Technology, 8(6), P357.10.1149/2.0271906jss Search in Google Scholar

80. Neumann, T. V., Kara, B., Sargolzaeiaval, Y., Im, S., Ma, J., Yang, J., ... & Dickey, M. D. (2021). Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. Micromachines, 12(2), 146.10.3390/mi12020146791287533535606 Search in Google Scholar

81. Saborio, M. G., Cai, S., Tang, J., Ghasemian, M. B., Mayyas, M., Han, J., & Kalantar-Zadeh, K. (2020). Liquid Metal Droplet and Graphene Co-Fillers for Electrically Conductive Flexible Composites. Small, 16(12), 1903753.10.1002/smll.20190375331565857 Search in Google Scholar

82. Wang, T., Zhao, Q., Miao, Y., Ma, F., Xie, Y., & Jie, W. (2018). Lattice vibration of layered GaTe single crystals. Crystals, 8(2), 74.10.3390/cryst8020074 Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials