Accès libre

Effect of Different Sized Multi Walled Carbon Nanotubes on the Barrier Potential and Trap Concentration of Malachite Green Dye Based Organic Device

À propos de cet article

Citez

1. Liu Y- F., Feng J., Bi Y-G., Yin D., Sun H. B.: Recent Developments in Flexible Organic Light-Emitting Devices. Advanced Materials Technologies 4 (2019) 1800371-1 –1800371-19.10.1002/admt.201800371Search in Google Scholar

2. Oehzelt M., Koch N., Heimel G.: Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nature Communications 5 (2014) 1-8.10.1038/ncomms5174Search in Google Scholar

3. Haneef H. F., Zeidell A. M., Jurchescu O. D.: Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C 8 (2020) 759-787.10.1039/C9TC05695ESearch in Google Scholar

4. Bullejos P. L., Tejada J. A. J., Deen M. J., Marinov O., Datars W. R.: Unified model for the injection and transport of charge in organic diodes. Journal of Applied Physics 103 (2008) 064504-1-064504-12.10.1063/1.2884711Search in Google Scholar

5. Armbrust N., Schiller F., Gűdde J., Höfer U.: Model potential for the description of metal/organic interface states. Scientific Reports 7 (2017) 1-8.10.1038/srep46561Search in Google Scholar

6. Kumar S., Iyer S. S. K.: Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements. Journal of Applied Physics 121 (2017) 143104-1–143104-6.10.1063/1.4980030Search in Google Scholar

7. Lian Z., Wei C., Gao B., Yang X., Chan Y., et al.: Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances 10 (2020) 9210-9225.10.1039/C9RA10899HSearch in Google Scholar

8. Park J. G., Cheng Q., Lu J., Bao J., Li S., et al.: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50 (2012) 2083-2090.10.1016/j.carbon.2011.12.046Search in Google Scholar

9. Kumanek B., Janas D.: Thermal conductivity of carbon nanotube networks: a review. Journal of Materials Science 54 (2019) 7397-7427.10.1007/s10853-019-03368-0Search in Google Scholar

10. Yang M., Li X., Wang W., Zhang S., Han R.: Adsorption of methyl blue from solution by carboxylic multi-walled carbon nanotubes in batch mode. Desalination and Water Treatment 159 (2019) 365-376.10.5004/dwt.2019.24170Search in Google Scholar

11. Svensson J., Campbell E. E. B.: Schottky barriers in carbon nanotube-metal contacts. Journal of Applied Physics 110 (2011) 111101-1 –111101-16.10.1063/1.3664139Search in Google Scholar

12. Guo J., Liu Y.,1 Prada-Silvy R., Tan Y., Azad S., Krause B., Potschke P., Grady B. P.: Aspect Ratio Effects of Multi-walled Carbon Nanotubes on Electrical, Mechanical, and Thermal Properties of Polycarbonate/MWCNT Composites. Journal of Polymer Science Part B Polymer Physics 52 (2014) 73-83.10.1002/polb.23402Search in Google Scholar

13. Sze S.M., Ng K.K.: Physics of Semiconductor Devices. [3rd ed.], Wiley, New York, 2007.10.1002/0470068329Search in Google Scholar

14. Kumatani A., Li Y., Darmawan P., Minari T., Tsukagoshi K.: On Practical Charge Injection at the Metal/Organic Semiconductor Interface. Scientific Reports 3 (2013) 1-6.10.1038/srep01026Search in Google Scholar

15. Patel D. K., Kim H.B., Dutta S. D., Ganguly K., Lim K.T.: Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials 13 (2020) 1679.10.3390/ma13071679Search in Google Scholar

16. Ahmad M. A., Afandi N. S., Adegoke K. A., Bello O. S.: Optimization and batch studies on adsorption of malachite green dye using rambutan seed activated carbon. Desalination and Water Treatment 57 (2015) 21487-21511.10.1080/19443994.2015.1119744Search in Google Scholar

17. Sen S., Manik N. B.: Effect of Carboxyl-Functionalized Single Walled Carbon Nanotubes on the Interfacial Barrier Height of Malachite Green Dye Based Organic Device. Physics International 10 (2019) 1-7.10.3844/pisp.2019.1.7Search in Google Scholar

18. Sen S., Manik N. B.: Study on the Effect of 8 nm Size Multi Walled Carbon Nanotubes (MWCNT) on the Barrier Height of Malachite Green (MG) Dye Based Organic Device. International Journal of Advanced Science and Engineering 6 (2020) 23-27.10.29294/IJASE.6.S2.2020.23-27Search in Google Scholar

19. Sen S., Manik N. B.: Effect of Zinc Oxide (ZnO) Nanoparticles on Interfacial Barrier Height and Band Bending of Phenosafranin (PSF) Dye-Based Organic Device. Journal of Electronic Materials 49 (2020) 4647-4652.10.1007/s11664-020-08202-xSearch in Google Scholar

20. Chiguvare Z., Parisi J., Dyakonov V.: Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. Journal of Applied Physics 94 (2003) 2440-2448.10.1063/1.1588358Search in Google Scholar

21. Harrabi Z., Jomni S., Beji L., Bouazizi A.: Distribution of barrier heights in Au/porous GaAs Schottky diodes from current–voltage–temperature measurements. Physica B 405 (2010) 3745-3750.10.1016/j.physb.2010.05.079Search in Google Scholar

22. Al-Ta’ii H. M. J., Amin Y. M., Periasamy V.: Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation. Sensors 15 (2015) 4810-4822.10.3390/s150304810Search in Google Scholar

23. Sen S., Manik N. B.: Effect of Back Electrode on Trap Energy and Interfacial Barrier Height of Crystal Violet (CV) Dye based Organic Device. Bulletin of Materials Science 43 (2020) 1-4.10.1007/s12034-020-2047-2Search in Google Scholar

24. Selçuk A. B., Ocak S. B., Kahraman G., Selçuk A. H.: Investigation of diode parameters using I–V and C–V characteristics of Al/maleic anhydride (MA)/p-Si structure. Bulletin of Materials Science 37 (2014) 1717-1724.10.1007/s12034-014-0729-3Search in Google Scholar

25. Yildirim M.: Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer. Journal of Polytechnic 20 (2017) 165-173.Search in Google Scholar

26. Zhang T., Raynaud C., Planson D.: Measure and analysis of 4H-SiC Schottky barrier height with Mo contacts. The European Physical Journal Applied Physics 85 (2019) 10102-1 –10102-9.10.1051/epjap/2018180282Search in Google Scholar

27. Norde H.: A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics 50 (1979) 5052-5053.10.1063/1.325607Search in Google Scholar

28. Yakuphanoglu F., Shah M., Farooq W. A.: Electrical and Interfacial Properties of p-Si/P3HT Organic-on-Inorganic Junction Barrier. Acta Physica Polonica A 120 (2011) 558-562.10.12693/APhysPolA.120.558Search in Google Scholar

29. Kocyigit A., Yılmaz M., Aydogan Ș., Incekara Ü.: The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds 790 (2019) 388-396.10.1016/j.jallcom.2019.03.179Search in Google Scholar

30. Türüt A.: Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottky contacts. Turkish Journal of Physics 36 (2012) 235-244.10.3906/fiz-1103-8Search in Google Scholar

31. Fukui K.: Theory of Orientation and Stereo Selection. Springer, Berlin, Heidelberg 1975.Search in Google Scholar

32. Haldar A., Maity S., Manik N. B.: Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics 14 (2008) 427-432.10.1007/s11581-007-0194-8Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials