Accesso libero

Effect of Different Sized Multi Walled Carbon Nanotubes on the Barrier Potential and Trap Concentration of Malachite Green Dye Based Organic Device

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Liu Y- F., Feng J., Bi Y-G., Yin D., Sun H. B.: Recent Developments in Flexible Organic Light-Emitting Devices. Advanced Materials Technologies 4 (2019) 1800371-1 –1800371-19.10.1002/admt.201800371Search in Google Scholar

2. Oehzelt M., Koch N., Heimel G.: Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nature Communications 5 (2014) 1-8.10.1038/ncomms5174Search in Google Scholar

3. Haneef H. F., Zeidell A. M., Jurchescu O. D.: Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C 8 (2020) 759-787.10.1039/C9TC05695ESearch in Google Scholar

4. Bullejos P. L., Tejada J. A. J., Deen M. J., Marinov O., Datars W. R.: Unified model for the injection and transport of charge in organic diodes. Journal of Applied Physics 103 (2008) 064504-1-064504-12.10.1063/1.2884711Search in Google Scholar

5. Armbrust N., Schiller F., Gűdde J., Höfer U.: Model potential for the description of metal/organic interface states. Scientific Reports 7 (2017) 1-8.10.1038/srep46561Search in Google Scholar

6. Kumar S., Iyer S. S. K.: Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements. Journal of Applied Physics 121 (2017) 143104-1–143104-6.10.1063/1.4980030Search in Google Scholar

7. Lian Z., Wei C., Gao B., Yang X., Chan Y., et al.: Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances 10 (2020) 9210-9225.10.1039/C9RA10899HSearch in Google Scholar

8. Park J. G., Cheng Q., Lu J., Bao J., Li S., et al.: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50 (2012) 2083-2090.10.1016/j.carbon.2011.12.046Search in Google Scholar

9. Kumanek B., Janas D.: Thermal conductivity of carbon nanotube networks: a review. Journal of Materials Science 54 (2019) 7397-7427.10.1007/s10853-019-03368-0Search in Google Scholar

10. Yang M., Li X., Wang W., Zhang S., Han R.: Adsorption of methyl blue from solution by carboxylic multi-walled carbon nanotubes in batch mode. Desalination and Water Treatment 159 (2019) 365-376.10.5004/dwt.2019.24170Search in Google Scholar

11. Svensson J., Campbell E. E. B.: Schottky barriers in carbon nanotube-metal contacts. Journal of Applied Physics 110 (2011) 111101-1 –111101-16.10.1063/1.3664139Search in Google Scholar

12. Guo J., Liu Y.,1 Prada-Silvy R., Tan Y., Azad S., Krause B., Potschke P., Grady B. P.: Aspect Ratio Effects of Multi-walled Carbon Nanotubes on Electrical, Mechanical, and Thermal Properties of Polycarbonate/MWCNT Composites. Journal of Polymer Science Part B Polymer Physics 52 (2014) 73-83.10.1002/polb.23402Search in Google Scholar

13. Sze S.M., Ng K.K.: Physics of Semiconductor Devices. [3rd ed.], Wiley, New York, 2007.10.1002/0470068329Search in Google Scholar

14. Kumatani A., Li Y., Darmawan P., Minari T., Tsukagoshi K.: On Practical Charge Injection at the Metal/Organic Semiconductor Interface. Scientific Reports 3 (2013) 1-6.10.1038/srep01026Search in Google Scholar

15. Patel D. K., Kim H.B., Dutta S. D., Ganguly K., Lim K.T.: Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials 13 (2020) 1679.10.3390/ma13071679Search in Google Scholar

16. Ahmad M. A., Afandi N. S., Adegoke K. A., Bello O. S.: Optimization and batch studies on adsorption of malachite green dye using rambutan seed activated carbon. Desalination and Water Treatment 57 (2015) 21487-21511.10.1080/19443994.2015.1119744Search in Google Scholar

17. Sen S., Manik N. B.: Effect of Carboxyl-Functionalized Single Walled Carbon Nanotubes on the Interfacial Barrier Height of Malachite Green Dye Based Organic Device. Physics International 10 (2019) 1-7.10.3844/pisp.2019.1.7Search in Google Scholar

18. Sen S., Manik N. B.: Study on the Effect of 8 nm Size Multi Walled Carbon Nanotubes (MWCNT) on the Barrier Height of Malachite Green (MG) Dye Based Organic Device. International Journal of Advanced Science and Engineering 6 (2020) 23-27.10.29294/IJASE.6.S2.2020.23-27Search in Google Scholar

19. Sen S., Manik N. B.: Effect of Zinc Oxide (ZnO) Nanoparticles on Interfacial Barrier Height and Band Bending of Phenosafranin (PSF) Dye-Based Organic Device. Journal of Electronic Materials 49 (2020) 4647-4652.10.1007/s11664-020-08202-xSearch in Google Scholar

20. Chiguvare Z., Parisi J., Dyakonov V.: Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. Journal of Applied Physics 94 (2003) 2440-2448.10.1063/1.1588358Search in Google Scholar

21. Harrabi Z., Jomni S., Beji L., Bouazizi A.: Distribution of barrier heights in Au/porous GaAs Schottky diodes from current–voltage–temperature measurements. Physica B 405 (2010) 3745-3750.10.1016/j.physb.2010.05.079Search in Google Scholar

22. Al-Ta’ii H. M. J., Amin Y. M., Periasamy V.: Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation. Sensors 15 (2015) 4810-4822.10.3390/s150304810Search in Google Scholar

23. Sen S., Manik N. B.: Effect of Back Electrode on Trap Energy and Interfacial Barrier Height of Crystal Violet (CV) Dye based Organic Device. Bulletin of Materials Science 43 (2020) 1-4.10.1007/s12034-020-2047-2Search in Google Scholar

24. Selçuk A. B., Ocak S. B., Kahraman G., Selçuk A. H.: Investigation of diode parameters using I–V and C–V characteristics of Al/maleic anhydride (MA)/p-Si structure. Bulletin of Materials Science 37 (2014) 1717-1724.10.1007/s12034-014-0729-3Search in Google Scholar

25. Yildirim M.: Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer. Journal of Polytechnic 20 (2017) 165-173.Search in Google Scholar

26. Zhang T., Raynaud C., Planson D.: Measure and analysis of 4H-SiC Schottky barrier height with Mo contacts. The European Physical Journal Applied Physics 85 (2019) 10102-1 –10102-9.10.1051/epjap/2018180282Search in Google Scholar

27. Norde H.: A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics 50 (1979) 5052-5053.10.1063/1.325607Search in Google Scholar

28. Yakuphanoglu F., Shah M., Farooq W. A.: Electrical and Interfacial Properties of p-Si/P3HT Organic-on-Inorganic Junction Barrier. Acta Physica Polonica A 120 (2011) 558-562.10.12693/APhysPolA.120.558Search in Google Scholar

29. Kocyigit A., Yılmaz M., Aydogan Ș., Incekara Ü.: The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. Journal of Alloys and Compounds 790 (2019) 388-396.10.1016/j.jallcom.2019.03.179Search in Google Scholar

30. Türüt A.: Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottky contacts. Turkish Journal of Physics 36 (2012) 235-244.10.3906/fiz-1103-8Search in Google Scholar

31. Fukui K.: Theory of Orientation and Stereo Selection. Springer, Berlin, Heidelberg 1975.Search in Google Scholar

32. Haldar A., Maity S., Manik N. B.: Effect of back electrode on photovoltaic properties of crystal-violet-dye-doped solid-state thin film. Ionics 14 (2008) 427-432.10.1007/s11581-007-0194-8Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials