Accès libre

Application of the 3D Digital Image Correlation to the Analysis of Deformation of Joints Welded With the FSW Method After Shot Peening

À propos de cet article

Citez

1. Hatamleh O., Mishra R. S., Oliveras O.: Peening effects on mechanical properties in friction stir welded AA 2195 at elevated and cryogenic temperatures. Materials and Design, 30 (2009) 3165-3173.10.1016/j.matdes.2008.11.010Search in Google Scholar

2. Xu Y., Bao R.: Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique. Chinese Journal of Aeronautics, 30 (2017) 1258-1269.10.1016/j.cja.2016.11.003Search in Google Scholar

3. Padhy, G. K., Wu, C. S., Gao, S.: Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review. Journal of Materials Science & Technology, 34 (2018) 1-38.10.1016/j.jmst.2017.11.029Search in Google Scholar

4. Tashkandi M. A., Al-Jarrah J. A.: Ibrahim M. Increasing of the mechanical properties of friction stir welded joints of 6061 aluminum alloy by introducing alumina particles. Advances in Materials Science, 17 (2017) 29-40.10.1515/adms-2017-0009Search in Google Scholar

5. Guan W., Shen Y., Yan Y., Guo R., Zhang W.: Fabrication of ultra-thin copper foil pressure welding using FSW equipment. Journal of Materials Processing Tech., 251 (2018) 343-349.10.1016/j.jmatprotec.2017.08.022Search in Google Scholar

6. Tuz L., Kołodziejczak P., Kolasa A.: Friction stir welding of AZ91 and AM-Lite magnesium alloys. Welding International, 27 (4) (2011) 265-267.10.1080/09507116.2011.600036Search in Google Scholar

7. Iwaszko, J., Kudła, K., Fila, K., Strzelecka, M.: The Effect of Friction Stir Processing (FSP) on the Microstructure and Properties of AM60 Magnesium Alloy. Archives of Metallurgy and Materials, 61(3) (2016) 1555-1560.10.1515/amm-2016-0254Search in Google Scholar

8. Emami S., Saeid T., Abdollah-zadeh A.: Effect of friction stir welding parameters on the microstructure and microtexture evolution of SAF 2205 stainless steel. Journal of Alloys and Compounds, 810 (2019) 1-7.10.1016/j.jallcom.2019.151797Search in Google Scholar

9. Kasai H., Morisada Y., H. Fujii.: Dissimilar FSW of immiscible materials: Steel/magnesium. Materials Science & Engineering A, 624 (2015) 250-255.10.1016/j.msea.2014.11.060Search in Google Scholar

10. Gao Y., Morisada Y., Fujii H., Liao J.: Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer. Material Science and Engineering A, 711(10) (2018) 109–118.10.1016/j.msea.2017.11.034Search in Google Scholar

11. Sánchez Egea A.J., Rodríguez A., Celentano D., Calleja A., López de Lacalle L.N.: Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface & Coatings Technology, 367 (2019) 327-335.10.1016/j.surfcoat.2019.04.010Search in Google Scholar

12. Mira-Aguiar T., Verdera D., Leitao C., Rodrigues D. M.: Tool assisted friction welding: A FSW related technique for the linear lap welding of very thin steel plates. Journal of Materials Processing Technology, 238 (2016) 73-80.10.1016/j.jmatprotec.2016.07.006Search in Google Scholar

13. Xu W., Luo Y., Zhang W., Fu M.: Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. Journal of Materials Science & Technology, 34 (2018) 173-184.10.1016/j.jmst.2017.05.015Search in Google Scholar

14. Wang Z. B., He Z. B., Fan X. B., Zhou L., Lin Y. L., Yuan S. J.: High temperature deformation behavior of friction stir welded 2024-T4 aluminum alloy sheets. Journal of Materials Processing Tech., 247 (2017) 184-191.10.1016/j.jmatprotec.2017.04.015Search in Google Scholar

15. Saranath K. M., Ramji M.: Local zone wise elastic and plastic properties of electron beam welded Ti–6Al–4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method. Optics and Lasers in Engineering, 68 (2015) 222-234.10.1016/j.optlaseng.2015.01.005Search in Google Scholar

16. Lusiak T., Knec M.: Use of ARAMIS for fatigue process control in the accelerated test for composites. Transportation Research Procedia, 35 (2018) 250-258.10.1016/j.trpro.2018.12.023Search in Google Scholar

17. Zielecki W., Kubit A., Święch Ł.: Experimental analysis of strain field of adherent in adhesive joint subjected to peel. Measurements Automation Robotics, 2 (2013) 71-78.Search in Google Scholar

18. Leităo C., Galvăo I., Leal R.M., Rodrigues D.M.: Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Materials and Design, 33 (2012) 69-74.10.1016/j.matdes.2011.07.009Search in Google Scholar

19. Bonarski J. T.: Pomiar i wykorzystanie teksturowo – naprężeniowej charakterystyki mikrostruktury w diagnostyce materiałów. Instytut Metalurgii i Inżynierii Materiałowej. Kraków. (2013).Search in Google Scholar

20. Skrzypek S. J.: Nowe możliwości pomiaru makronaprężeń własnych materiałów przy zastosowaniu dyfrakcji promieniowania X w geometrii stałego kąta padania. Wydawnictwo AGH. Kraków. (2002).Search in Google Scholar

21. Kluz R., Kubit A.: Effect of friction stir welding on the load capacity of the joint 2016, Assembly Techniques and Technologies, 2 (2016) 31-34.Search in Google Scholar

22. Kubit A., Kluz R., Ochałek K., Wydrzyński D., Trzepieciński T.: Friction stir welding of 2024-T3 Aluminium alloy sheet with sheet pre-heating. Materials and Technology, 52(3) (2018) 283–288.10.17222/mit.2017.084Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials