Uneingeschränkter Zugang

Application of the 3D Digital Image Correlation to the Analysis of Deformation of Joints Welded With the FSW Method After Shot Peening


Zitieren

1. Hatamleh O., Mishra R. S., Oliveras O.: Peening effects on mechanical properties in friction stir welded AA 2195 at elevated and cryogenic temperatures. Materials and Design, 30 (2009) 3165-3173.10.1016/j.matdes.2008.11.010Search in Google Scholar

2. Xu Y., Bao R.: Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique. Chinese Journal of Aeronautics, 30 (2017) 1258-1269.10.1016/j.cja.2016.11.003Search in Google Scholar

3. Padhy, G. K., Wu, C. S., Gao, S.: Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review. Journal of Materials Science & Technology, 34 (2018) 1-38.10.1016/j.jmst.2017.11.029Search in Google Scholar

4. Tashkandi M. A., Al-Jarrah J. A.: Ibrahim M. Increasing of the mechanical properties of friction stir welded joints of 6061 aluminum alloy by introducing alumina particles. Advances in Materials Science, 17 (2017) 29-40.10.1515/adms-2017-0009Search in Google Scholar

5. Guan W., Shen Y., Yan Y., Guo R., Zhang W.: Fabrication of ultra-thin copper foil pressure welding using FSW equipment. Journal of Materials Processing Tech., 251 (2018) 343-349.10.1016/j.jmatprotec.2017.08.022Search in Google Scholar

6. Tuz L., Kołodziejczak P., Kolasa A.: Friction stir welding of AZ91 and AM-Lite magnesium alloys. Welding International, 27 (4) (2011) 265-267.10.1080/09507116.2011.600036Search in Google Scholar

7. Iwaszko, J., Kudła, K., Fila, K., Strzelecka, M.: The Effect of Friction Stir Processing (FSP) on the Microstructure and Properties of AM60 Magnesium Alloy. Archives of Metallurgy and Materials, 61(3) (2016) 1555-1560.10.1515/amm-2016-0254Search in Google Scholar

8. Emami S., Saeid T., Abdollah-zadeh A.: Effect of friction stir welding parameters on the microstructure and microtexture evolution of SAF 2205 stainless steel. Journal of Alloys and Compounds, 810 (2019) 1-7.10.1016/j.jallcom.2019.151797Search in Google Scholar

9. Kasai H., Morisada Y., H. Fujii.: Dissimilar FSW of immiscible materials: Steel/magnesium. Materials Science & Engineering A, 624 (2015) 250-255.10.1016/j.msea.2014.11.060Search in Google Scholar

10. Gao Y., Morisada Y., Fujii H., Liao J.: Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer. Material Science and Engineering A, 711(10) (2018) 109–118.10.1016/j.msea.2017.11.034Search in Google Scholar

11. Sánchez Egea A.J., Rodríguez A., Celentano D., Calleja A., López de Lacalle L.N.: Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surface & Coatings Technology, 367 (2019) 327-335.10.1016/j.surfcoat.2019.04.010Search in Google Scholar

12. Mira-Aguiar T., Verdera D., Leitao C., Rodrigues D. M.: Tool assisted friction welding: A FSW related technique for the linear lap welding of very thin steel plates. Journal of Materials Processing Technology, 238 (2016) 73-80.10.1016/j.jmatprotec.2016.07.006Search in Google Scholar

13. Xu W., Luo Y., Zhang W., Fu M.: Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. Journal of Materials Science & Technology, 34 (2018) 173-184.10.1016/j.jmst.2017.05.015Search in Google Scholar

14. Wang Z. B., He Z. B., Fan X. B., Zhou L., Lin Y. L., Yuan S. J.: High temperature deformation behavior of friction stir welded 2024-T4 aluminum alloy sheets. Journal of Materials Processing Tech., 247 (2017) 184-191.10.1016/j.jmatprotec.2017.04.015Search in Google Scholar

15. Saranath K. M., Ramji M.: Local zone wise elastic and plastic properties of electron beam welded Ti–6Al–4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method. Optics and Lasers in Engineering, 68 (2015) 222-234.10.1016/j.optlaseng.2015.01.005Search in Google Scholar

16. Lusiak T., Knec M.: Use of ARAMIS for fatigue process control in the accelerated test for composites. Transportation Research Procedia, 35 (2018) 250-258.10.1016/j.trpro.2018.12.023Search in Google Scholar

17. Zielecki W., Kubit A., Święch Ł.: Experimental analysis of strain field of adherent in adhesive joint subjected to peel. Measurements Automation Robotics, 2 (2013) 71-78.Search in Google Scholar

18. Leităo C., Galvăo I., Leal R.M., Rodrigues D.M.: Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Materials and Design, 33 (2012) 69-74.10.1016/j.matdes.2011.07.009Search in Google Scholar

19. Bonarski J. T.: Pomiar i wykorzystanie teksturowo – naprężeniowej charakterystyki mikrostruktury w diagnostyce materiałów. Instytut Metalurgii i Inżynierii Materiałowej. Kraków. (2013).Search in Google Scholar

20. Skrzypek S. J.: Nowe możliwości pomiaru makronaprężeń własnych materiałów przy zastosowaniu dyfrakcji promieniowania X w geometrii stałego kąta padania. Wydawnictwo AGH. Kraków. (2002).Search in Google Scholar

21. Kluz R., Kubit A.: Effect of friction stir welding on the load capacity of the joint 2016, Assembly Techniques and Technologies, 2 (2016) 31-34.Search in Google Scholar

22. Kubit A., Kluz R., Ochałek K., Wydrzyński D., Trzepieciński T.: Friction stir welding of 2024-T3 Aluminium alloy sheet with sheet pre-heating. Materials and Technology, 52(3) (2018) 283–288.10.17222/mit.2017.084Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien