Accès libre

The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique

À propos de cet article

Citez

1. Mohan L., Durgalakshmi D., Gheeta M, Sankara Narayanan T.S.N, Asokamani R.: Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications, Ceramics International, 38 (2012), 3435-3443.10.1016/j.ceramint.2011.12.056Search in Google Scholar

2. Cvijović-Alagić I., Cvijović Z., Mitrović Z., Panić V., Rakin M.: Wear and corrosion behaviour of Ti13Nb13Zr and Ti6Al4V alloys in simulated physiological solution, Corrosion Science 53 (2011), 796-808.10.1016/j.corsci.2010.11.014Search in Google Scholar

3. Zadrozhnyy V., Kaevitser E., Kopylov A., Borisowa Y., Sudarchikov V., Khesenova R., Gorshenkov M., Zadrozhnyy M., Koloshkin S.: Synthesis of hydroxyapatite coatings on the Ti substrates by mechanical alloying, Surface and Coatings Technology 281 (2015), 157-163.10.1016/j.surfcoat.2015.09.056Search in Google Scholar

4. Geetha M., Singh A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (2009), 397-425.10.1016/j.pmatsci.2008.06.004Search in Google Scholar

5. Pachauri P.: Techniques for dental implant nanosurface modifications, J.Adv Prosthodont 6 (2014), 498-504.10.4047/jap.2014.6.6.498Search in Google Scholar

6. Chen Q., Thouas G.: Metallic implant biomaterials, Materials Science and Engineering R 87 (2015), 1-57.10.1016/j.mser.2014.10.001Search in Google Scholar

7. Metikos-Hukovic M., Kwokal A.: The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials 24 (2003), 3765-3775.10.1016/S0142-9612(03)00252-7Search in Google Scholar

8. Marciniak J: Biomaterials, The Publishing House of Technical University of Silesian, Gliwice 2013.Search in Google Scholar

9. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti-Ta-Zr alloy by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.10.1016/j.tsf.2014.07.058Search in Google Scholar

10. Mishra A., Davidson J.: Mechanical and Tribological Properties and biocompatibility of diffusion hardened Ti13-Zr13-Nb a new titanium alloy for surgical implants, medical Applications of Titanium and Its Alloy: The Material and Biological Issues, American Society for Testing and materials (1996), 96 – 112.10.1520/STP16073SSearch in Google Scholar

11. Saji V., Choe H.: Electrochemical corrosion behavior of nanotubular Ti-13Nb–13Zr alloy in Ringer’s solution, Corrosion Science 51 (2009), 1658–1663.10.1016/j.corsci.2009.04.013Search in Google Scholar

12. Kollath O., Chen Q., Closset R., Luyten J., Taina K.: AC vs. DC electrophoretic deposition of hydroxyapatite on titanium, Journal of the European Ceramic Society 33 (2013), 2715-2721.10.1016/j.jeurceramsoc.2013.04.030Search in Google Scholar

13. Farrokhi-Rad M., Shahrabi T.: Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceramics International 40 (2014), 3031-3039.10.1016/j.ceramint.2013.10.004Search in Google Scholar

14. Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I.: Electrophoretic deposition of biomaterials, J. R. Soc. Interface 7 (2010), 581–613.10.1098/rsif.2010.0156.focus295218120504802Search in Google Scholar

15. Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52 (2007), 1–61.10.1016/j.pmatsci.2006.07.001Search in Google Scholar

16. Zhitomirsky I., Gal-Or L.: Electrophoretic deposition of hydroxyapatite, Journal of Materials Science: Materials in Medicine 8 (1997), 213-219.Search in Google Scholar

17. Kumara R., Kuntala K., Singha S., Guptaa P., Bhushanc B., Gopinathc P., Lahiri D.: Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application, Surface and Coatings Technology 287 (2016), 82-92.10.1016/j.surfcoat.2015.12.086Search in Google Scholar

18. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.10.1016/j.tsf.2014.07.058Search in Google Scholar

19. Say Y., Aksakal B., Dikici B: Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy, Ceramics International 8 (42) (2016), 10151-10158.10.1016/j.ceramint.2016.03.127Search in Google Scholar

20. Hea D., Liua P., Liua X., Maa F., Chena X., Lia W., Dub J., Wang P., Zhao J.: Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V, Journal of Alloys and Compounds 675 (2016), 336-343.10.1016/j.jallcom.2016.02.173Search in Google Scholar

21. Vasilescu C., Popa M., Drob S., Osiceanu P., Anastasescu M., Moreno J.: Deposition and characterization of bioactive ceramic hydroxyapatite coating on surface of Ti–15Zr–5Nb alloy, Ceramics International 9 part B (40) (2014), 14973-14982.10.1016/j.ceramint.2014.06.096Search in Google Scholar

22. Palanivelu R., Kalainathan S., Kumar A.: Characterization studies on plasma sprayed (AT/HA) bi-layered nanoceramics coating on biomedical commercially pure titanium dental implant, Ceram. Int. 40 (2014), 7745–7751.10.1016/j.ceramint.2013.12.116Search in Google Scholar

23. Jeong Y., Choe H., Brantley W.: Electrochemical and surface behavior of hydroxyapatite/Ti film on nanotubular Ti-35Nb-xZralloys, Appl. Surf.Sci. 258 (2012), 2129–2136.10.1016/j.apsusc.2011.03.086Search in Google Scholar

24. Wang C., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study, Biomaterials 24 (2003), 3069–3077.10.1016/S0142-9612(03)00154-6Search in Google Scholar

25. Yamaguchi S., Takadama H., Matsushita T., Nakamura T., Kokubo T.: Apatite-formingability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment, J.Mater. Sci.: Mater. Med. 21 (2010) 439–444.Search in Google Scholar

26. Vasilescu C., Drob P., Vasilescu E., Demetrescu I., Ionita D., Prodana M., Drob S.: Characterization and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films onTi-6Al-4V-1Zr alloy surface, Corros.Sci. 53 (2011), 992–999.10.1016/j.corsci.2010.11.033Search in Google Scholar

27. Duarte L., Biaggio S., Rocha-Filho R., Bocchi N.: Preparation and characterization of biomimetically and electrochemically deposited hydroxyapatite coatings on micro-arc oxidized Ti-13Nb-13Zr, J.Mater. Sci.: Mater.Med. 22 (2011), 1663–1670.Search in Google Scholar

28. Bigi A., Fini M. Bracci B., Boanini E., Torricelli P., Giavaresi G., Aldini N., Facchini A., Sbaiz F., Giardino R.: The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model, Biomaterials 29 (2008), 1730–1736.10.1016/j.biomaterials.2007.12.011Search in Google Scholar

29. Jemat A., Ghazali M.: Surface Modifications and Their Effects on Titanium Dental Implants, BioMed Research International (2015).10.1155/2015/791725Search in Google Scholar

30. Jurczyk M., Jakubowicz J.: Biomaterials, The Publishing House of Technical University of Poznan, Poznan 2008.Search in Google Scholar

31. Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia 7 (2011), 2769–2781.10.1016/j.actbio.2011.03.019Search in Google Scholar

32. Rojaee R., Fathi M., Raeissi K.: Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments, Applied Surface Science 285 P (2013), 664–673.10.1016/j.apsusc.2013.08.108Search in Google Scholar

33. Rath P., Besra L.: Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceramics International 38 (4) (2012), 3209–321610.1016/j.ceramint.2011.12.026Search in Google Scholar

34. Zhenyn Z., Jinli Q.: Electrophoretic deposition of biomimetic zinc substituted hydroxyapatite coatings with chitosan and carbon nanotubes on titanium, Ceramics International 41 (7) (2015), 8878–8884.10.1016/j.ceramint.2015.03.145Search in Google Scholar

35. Stoch A., Brożek A.: Electrophoretic coating of hydroxyapatite on titanium implants, Journal of Molecular Structure 596 (1-3) (2001), 191–200.10.1016/S0022-2860(01)00716-5Search in Google Scholar

36. Xiao X., Liu R.: Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings, Materials Letters 60 (11-12) (2006), 2627–2632.10.1016/j.matlet.2006.01.048Search in Google Scholar

37. Kwok C.K., Wong P.K., Cheng F.T.: Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 225 (13-14) (2009), 6736–6744.10.1016/j.apsusc.2009.02.086Search in Google Scholar

38. Nakamura M., Hori N., Ando H.: Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Material Science and Engineering C 62 (2016), 283-292.10.1016/j.msec.2016.01.03726952425Search in Google Scholar

39. Khandan A., Abdellahi M., Ozada N.: Study of the bioactivity, wettability and hardness behavior of the bovine hydroxyapatite-diopside bio-nanocoposite coating, Journal of the Taiwan Institute of Chemical Engineers 60 (2016), 538-546.10.1016/j.jtice.2015.10.004Search in Google Scholar

40. Eliaz N., Shmueli S., Shur I.: The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia 5 (2010), 3178-3191.10.1016/j.actbio.2009.04.00519409870Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials