Acceso abierto

The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique


Cite

1. Mohan L., Durgalakshmi D., Gheeta M, Sankara Narayanan T.S.N, Asokamani R.: Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications, Ceramics International, 38 (2012), 3435-3443.10.1016/j.ceramint.2011.12.056Search in Google Scholar

2. Cvijović-Alagić I., Cvijović Z., Mitrović Z., Panić V., Rakin M.: Wear and corrosion behaviour of Ti13Nb13Zr and Ti6Al4V alloys in simulated physiological solution, Corrosion Science 53 (2011), 796-808.10.1016/j.corsci.2010.11.014Search in Google Scholar

3. Zadrozhnyy V., Kaevitser E., Kopylov A., Borisowa Y., Sudarchikov V., Khesenova R., Gorshenkov M., Zadrozhnyy M., Koloshkin S.: Synthesis of hydroxyapatite coatings on the Ti substrates by mechanical alloying, Surface and Coatings Technology 281 (2015), 157-163.10.1016/j.surfcoat.2015.09.056Search in Google Scholar

4. Geetha M., Singh A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (2009), 397-425.10.1016/j.pmatsci.2008.06.004Search in Google Scholar

5. Pachauri P.: Techniques for dental implant nanosurface modifications, J.Adv Prosthodont 6 (2014), 498-504.10.4047/jap.2014.6.6.498Search in Google Scholar

6. Chen Q., Thouas G.: Metallic implant biomaterials, Materials Science and Engineering R 87 (2015), 1-57.10.1016/j.mser.2014.10.001Search in Google Scholar

7. Metikos-Hukovic M., Kwokal A.: The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials 24 (2003), 3765-3775.10.1016/S0142-9612(03)00252-7Search in Google Scholar

8. Marciniak J: Biomaterials, The Publishing House of Technical University of Silesian, Gliwice 2013.Search in Google Scholar

9. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti-Ta-Zr alloy by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.10.1016/j.tsf.2014.07.058Search in Google Scholar

10. Mishra A., Davidson J.: Mechanical and Tribological Properties and biocompatibility of diffusion hardened Ti13-Zr13-Nb a new titanium alloy for surgical implants, medical Applications of Titanium and Its Alloy: The Material and Biological Issues, American Society for Testing and materials (1996), 96 – 112.10.1520/STP16073SSearch in Google Scholar

11. Saji V., Choe H.: Electrochemical corrosion behavior of nanotubular Ti-13Nb–13Zr alloy in Ringer’s solution, Corrosion Science 51 (2009), 1658–1663.10.1016/j.corsci.2009.04.013Search in Google Scholar

12. Kollath O., Chen Q., Closset R., Luyten J., Taina K.: AC vs. DC electrophoretic deposition of hydroxyapatite on titanium, Journal of the European Ceramic Society 33 (2013), 2715-2721.10.1016/j.jeurceramsoc.2013.04.030Search in Google Scholar

13. Farrokhi-Rad M., Shahrabi T.: Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceramics International 40 (2014), 3031-3039.10.1016/j.ceramint.2013.10.004Search in Google Scholar

14. Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I.: Electrophoretic deposition of biomaterials, J. R. Soc. Interface 7 (2010), 581–613.10.1098/rsif.2010.0156.focus295218120504802Search in Google Scholar

15. Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science 52 (2007), 1–61.10.1016/j.pmatsci.2006.07.001Search in Google Scholar

16. Zhitomirsky I., Gal-Or L.: Electrophoretic deposition of hydroxyapatite, Journal of Materials Science: Materials in Medicine 8 (1997), 213-219.Search in Google Scholar

17. Kumara R., Kuntala K., Singha S., Guptaa P., Bhushanc B., Gopinathc P., Lahiri D.: Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application, Surface and Coatings Technology 287 (2016), 82-92.10.1016/j.surfcoat.2015.12.086Search in Google Scholar

18. Kim H., Jeong Y., Choe H., Brantley W.: Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition, Thin Solid Films 572 (2014), 119-125.10.1016/j.tsf.2014.07.058Search in Google Scholar

19. Say Y., Aksakal B., Dikici B: Effect of hydroxyapatite/SiO2 hybride coatings on surface morphology and corrosion resistance of REX-734 alloy, Ceramics International 8 (42) (2016), 10151-10158.10.1016/j.ceramint.2016.03.127Search in Google Scholar

20. Hea D., Liua P., Liua X., Maa F., Chena X., Lia W., Dub J., Wang P., Zhao J.: Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V, Journal of Alloys and Compounds 675 (2016), 336-343.10.1016/j.jallcom.2016.02.173Search in Google Scholar

21. Vasilescu C., Popa M., Drob S., Osiceanu P., Anastasescu M., Moreno J.: Deposition and characterization of bioactive ceramic hydroxyapatite coating on surface of Ti–15Zr–5Nb alloy, Ceramics International 9 part B (40) (2014), 14973-14982.10.1016/j.ceramint.2014.06.096Search in Google Scholar

22. Palanivelu R., Kalainathan S., Kumar A.: Characterization studies on plasma sprayed (AT/HA) bi-layered nanoceramics coating on biomedical commercially pure titanium dental implant, Ceram. Int. 40 (2014), 7745–7751.10.1016/j.ceramint.2013.12.116Search in Google Scholar

23. Jeong Y., Choe H., Brantley W.: Electrochemical and surface behavior of hydroxyapatite/Ti film on nanotubular Ti-35Nb-xZralloys, Appl. Surf.Sci. 258 (2012), 2129–2136.10.1016/j.apsusc.2011.03.086Search in Google Scholar

24. Wang C., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study, Biomaterials 24 (2003), 3069–3077.10.1016/S0142-9612(03)00154-6Search in Google Scholar

25. Yamaguchi S., Takadama H., Matsushita T., Nakamura T., Kokubo T.: Apatite-formingability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment, J.Mater. Sci.: Mater. Med. 21 (2010) 439–444.Search in Google Scholar

26. Vasilescu C., Drob P., Vasilescu E., Demetrescu I., Ionita D., Prodana M., Drob S.: Characterization and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films onTi-6Al-4V-1Zr alloy surface, Corros.Sci. 53 (2011), 992–999.10.1016/j.corsci.2010.11.033Search in Google Scholar

27. Duarte L., Biaggio S., Rocha-Filho R., Bocchi N.: Preparation and characterization of biomimetically and electrochemically deposited hydroxyapatite coatings on micro-arc oxidized Ti-13Nb-13Zr, J.Mater. Sci.: Mater.Med. 22 (2011), 1663–1670.Search in Google Scholar

28. Bigi A., Fini M. Bracci B., Boanini E., Torricelli P., Giavaresi G., Aldini N., Facchini A., Sbaiz F., Giardino R.: The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model, Biomaterials 29 (2008), 1730–1736.10.1016/j.biomaterials.2007.12.011Search in Google Scholar

29. Jemat A., Ghazali M.: Surface Modifications and Their Effects on Titanium Dental Implants, BioMed Research International (2015).10.1155/2015/791725Search in Google Scholar

30. Jurczyk M., Jakubowicz J.: Biomaterials, The Publishing House of Technical University of Poznan, Poznan 2008.Search in Google Scholar

31. Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomaterialia 7 (2011), 2769–2781.10.1016/j.actbio.2011.03.019Search in Google Scholar

32. Rojaee R., Fathi M., Raeissi K.: Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments, Applied Surface Science 285 P (2013), 664–673.10.1016/j.apsusc.2013.08.108Search in Google Scholar

33. Rath P., Besra L.: Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceramics International 38 (4) (2012), 3209–321610.1016/j.ceramint.2011.12.026Search in Google Scholar

34. Zhenyn Z., Jinli Q.: Electrophoretic deposition of biomimetic zinc substituted hydroxyapatite coatings with chitosan and carbon nanotubes on titanium, Ceramics International 41 (7) (2015), 8878–8884.10.1016/j.ceramint.2015.03.145Search in Google Scholar

35. Stoch A., Brożek A.: Electrophoretic coating of hydroxyapatite on titanium implants, Journal of Molecular Structure 596 (1-3) (2001), 191–200.10.1016/S0022-2860(01)00716-5Search in Google Scholar

36. Xiao X., Liu R.: Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings, Materials Letters 60 (11-12) (2006), 2627–2632.10.1016/j.matlet.2006.01.048Search in Google Scholar

37. Kwok C.K., Wong P.K., Cheng F.T.: Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 225 (13-14) (2009), 6736–6744.10.1016/j.apsusc.2009.02.086Search in Google Scholar

38. Nakamura M., Hori N., Ando H.: Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Material Science and Engineering C 62 (2016), 283-292.10.1016/j.msec.2016.01.03726952425Search in Google Scholar

39. Khandan A., Abdellahi M., Ozada N.: Study of the bioactivity, wettability and hardness behavior of the bovine hydroxyapatite-diopside bio-nanocoposite coating, Journal of the Taiwan Institute of Chemical Engineers 60 (2016), 538-546.10.1016/j.jtice.2015.10.004Search in Google Scholar

40. Eliaz N., Shmueli S., Shur I.: The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells, Acta Biomaterialia 5 (2010), 3178-3191.10.1016/j.actbio.2009.04.00519409870Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials