Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult Sci. 2022;101(4):101696. https://doi.org/10.1016/j.psj.2022.101696Abd El-HackMEEl-SaadonyMTSalemHMEl-TahanAMSolimanMMYoussefGBATahaAESolimanSMAhmedAEEl-KottAFAlternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult Sci. 2022;101(4):101696. https://doi.org/10.1016/j.psj.2022.101696Search in Google Scholar
Abdallah A, Zhang P, Zhong Q, Sun Z. Application of traditional Chinese Herbal Medicine by-products as dietary feed supplements and antibiotic replacements in animal production. Curr Drug Metab. 2019;20(1):54–64. https://doi.org/10.2174/1389200219666180523102920AbdallahAZhangPZhongQSunZ.Application of traditional Chinese Herbal Medicine by-products as dietary feed supplements and antibiotic replacements in animal production. Curr Drug Metab. 2019;20(1):54–64. https://doi.org/10.2174/1389200219666180523102920Search in Google Scholar
Agostini C, Eckert C, Vincenzi A, Machado BL, Jordon BC, Kipper JP, Dullius A, Dullius CH, Lehn DN, Sperotto RA, et al. Characterization of technological and probiotic properties of indigenous Lactobacillus spp. from south Brazil. 3 Biotech. 2018;8(11):451. https://doi.org/10.1007/s13205-018-1469-7AgostiniCEckertCVincenziAMachadoBLJordonBCKipperJPDulliusADulliusCHLehnDNSperottoRACharacterization of technological and probiotic properties of indigenous Lactobacillus spp. from south Brazil. 3 Biotech. 2018;8(11):451. https://doi.org/10.1007/s13205-018-1469-7Search in Google Scholar
Ait Chait Y, Gunenc A, Hosseinian F, Bendali F. Antipathogenic and probiotic potential of Lactobacillus brevis strains newly isolated from Algerian artisanal cheeses. Folia Microbiol. 2021;66(3):429–440. https://doi.org/10.1007/s12223-021-00857-1Ait ChaitYGunencAHosseinianFBendaliF.Antipathogenic and probiotic potential of Lactobacillus brevis strains newly isolated from Algerian artisanal cheeses. Folia Microbiol. 2021;66(3):429–440. https://doi.org/10.1007/s12223-021-00857-1Search in Google Scholar
Al-Khalaifah HS. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult Sci. 2018;97(11):3807–3815. https://doi.org/10.3382/ps/pey160Al-KhalaifahHS.Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult Sci. 2018;97(11):3807–3815. https://doi.org/10.3382/ps/pey160Search in Google Scholar
Alsayadi MSM, Al Jawfi Y, Belarbi M, Sabri FZ. Antioxidant potency of water kefir. J Microbiol Biotechnol Food Sci. 2013; 2(6): 2444–2447. https://office2.jmbfs.org/index.php/JMBFS/article/view/7101AlsayadiMSMAl JawfiYBelarbiMSabriFZ.Antioxidant potency of water kefir. J Microbiol Biotechnol Food Sci. 2013; 2(6): 2444–2447. https://office2.jmbfs.org/index.php/JMBFS/article/view/7101Search in Google Scholar
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: A critical review. J Appl Microbiol. 2021;130(3):677–687. https://doi.org/10.1111/jam.14843AshaoluTJAshaoluJOAdeyeyeSAO.Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: A critical review. J Appl Microbiol. 2021;130(3):677–687. https://doi.org/10.1111/jam.14843Search in Google Scholar
Bao C, Zhang W, Wang J, Liu Y, Cao H, Li F, Liu S, Shang Z, Cao Y, Dong B. The effects of dietary Bacillus amyloliquefaciens TL106 supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, epithelial barrier integrity, and intestinal microbiota in broilers. Animals. 2022;12(22):3085. https://doi.org/10.3390/ani12223085BaoCZhangWWangJLiuYCaoHLiFLiuSShangZCaoYDongB.The effects of dietary Bacillus amyloliquefaciens TL106 supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, epithelial barrier integrity, and intestinal microbiota in broilers. Animals. 2022;12(22):3085. https://doi.org/10.3390/ani12223085Search in Google Scholar
Bao CL, Liu SZ, Shang ZD, Liu YJ, Wang J, Zhang WX, Dong B, Cao YH. 2021. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol. 2021;131(1):470–484. https://doi.org/10.1111/jam.14952BaoCLLiuSZShangZDLiuYJWangJZhangWXDongBCaoYH.2021. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol. 2021;131(1):470–484. https://doi.org/10.1111/jam.14952Search in Google Scholar
Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control. 2010; 21(5):695–701. https://doi.org/10.1016/j.foodcont.2009.10.010BaoYZhangYZhangYLiuYWangSDongXWangYZhangH.Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control. 2010; 21(5):695–701. https://doi.org/10.1016/j.foodcont.2009.10.010Search in Google Scholar
Barzegar H, Alizadeh Behbahani B, Falah F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr. 2021;9(8):4094–4107. https://doi.org/10.1002/fsn3.2365BarzegarHAlizadeh BehbahaniBFalahF.Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr. 2021;9(8):4094–4107. https://doi.org/10.1002/fsn3.2365Search in Google Scholar
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354. https://doi.org/10.1152/physrev.00040.2012BhattacharyyaAChattopadhyayRMitraSCroweSE.Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354. https://doi.org/10.1152/physrev.00040.2012Search in Google Scholar
Caggia C, De Angelis M, Pitino I, Pino A, Randazzo CL. Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol. 2015;50:109–117. https://doi.org/10.1016/j.fm.2015.03.010CaggiaCDe AngelisMPitinoIPinoARandazzoCL.Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol. 2015;50:109–117. https://doi.org/10.1016/j.fm.2015.03.010Search in Google Scholar
Chang CH, Teng PY, Lee TT, Yu B. Effects of multi-strain probiotics combined with Gardeniae fructus on intestinal microbiota, metabolites, and morphology in broilers. J Poult Sci. 2019;56(1):32–43. https://doi.org/10.2141/jpsa.0170179ChangCHTengPYLeeTTYuB.Effects of multi-strain probiotics combined with Gardeniae fructus on intestinal microbiota, metabolites, and morphology in broilers. J Poult Sci. 2019;56(1):32–43. https://doi.org/10.2141/jpsa.0170179Search in Google Scholar
Chen Y, Chang SKC, Zhang Y, Hsu CY, Nannapaneni R. Gut microbiota and short chain fatty acid composition as affected by legume type and processing methods as assessed by simulated in vitro digestion assays. Food Chem. 2020;312:126040. https://doi.org/10.1016/j.foodchem.2019.126040ChenYChangSKCZhangYHsuCYNannapaneniR.Gut microbiota and short chain fatty acid composition as affected by legume type and processing methods as assessed by simulated in vitro digestion assays. Food Chem. 2020;312:126040. https://doi.org/10.1016/j.foodchem.2019.126040Search in Google Scholar
Chi S, Xu W, Han Y. ARGs distribution and high-risk ARGs identification based on continuous application of manure in purple soil. Sci Total Environ. 2022;853:158667. https://doi.org/10.1016/j.scitotenv.2022.158667ChiSXuWHanY.ARGs distribution and high-risk ARGs identification based on continuous application of manure in purple soil. Sci Total Environ. 2022;853:158667. https://doi.org/10.1016/j.scitotenv.2022.158667Search in Google Scholar
Dai Y, Quan J, Xiong L, Luo Y, Yi B. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and meta-analysis. Ren Fail Renal Failure. 2022;44(1):862–880. https://doi.org/10.1080/0886022X.2022.2079522DaiYQuanJXiongLLuoYYiB.Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and meta-analysis. Ren Fail Renal Failure. 2022;44(1):862–880. https://doi.org/10.1080/0886022X.2022.2079522Search in Google Scholar
de Souza M, Baptista AAS, Valdiviezo MJJ, Justino L, Menck-Costa MF, Ferraz CR, da Gloria EM, Verri WA Jr, Bracarense APFRL.Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon. 2020;185:203–212. https://doi.org/10.1016/j.toxicon.2020.07.002de SouzaMBaptistaAASValdiviezoMJJJustinoLMenck-CostaMFFerrazCRda GloriaEM Verri WA Jr, BracarenseAPFRL.Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon. 2020;185:203–212. https://doi.org/10.1016/j.toxicon.2020.07.002Search in Google Scholar
Deepthi BV, Somashekaraiah R, Poornachandra Rao K, Deepa N, Dharanesha NK, Girish KS, Sreenivasa MY.Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers. Front Microbiol. 2017;8:2317. https://doi.org/10.3389/fmicb.2017.02317DeepthiBVSomashekaraiahRPoornachandra RaoKDeepaNDharaneshaNKGirishKSSreenivasaMY.Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers. Front Microbiol. 2017;8:2317. https://doi.org/10.3389/fmicb.2017.02317Search in Google Scholar
Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. In: Konings WN, Kuipers OP, In ’t Veld JHJH, editors. Lactic acid bacteria: Genetics, metabolism and applications. Dordrecht (The Netherlands): Springer; 1999. p. 159–184. https://doi.org/10.1007/978-94-017-2027-4_7DelcourJFerainTDeghorainMPalumboEHolsP.The biosynthesis and functionality of the cell-wall of lactic acid bacteria. In: KoningsWNKuipersOP, In ‘t VeldJHJH, editors. Lactic acid bacteria: Genetics, metabolism and applications. Dordrecht (The Netherlands): Springer; 1999. p. 159–184. https://doi.org/10.1007/978-94-017-2027-4_7Search in Google Scholar
Deng F, Tang S, Zhao H, Zhong R, Liu L, Meng Q, Zhang H, Chen L. Combined effects of sodium butyrate and xylo-oligosaccharide on growth performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers at early stage. Poult Sci. 2023;102(5):102585. https://doi.org/10.1016/j.psj.2023.102585DengFTangSZhaoHZhongRLiuLMengQZhangHChenL.Combined effects of sodium butyrate and xylo-oligosaccharide on growth performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers at early stage. Poult Sci. 2023;102(5):102585. https://doi.org/10.1016/j.psj.2023.102585Search in Google Scholar
Diguță CF, Nițoi GD, Matei F, Luță G, Cornea CP. The biotechnological potential of Pediococcus spp. isolated from Kombucha Microbial Consortium. Foods. 2020;9(12):1780. https://doi.org/10.3390/foods9121780DiguțăCFNițoiGDMateiFLuțăGCorneaCP.The biotechnological potential of Pediococcus spp. isolated from Kombucha Microbial Consortium. Foods. 2020;9(12):1780. https://doi.org/10.3390/foods9121780Search in Google Scholar
Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim Nutr. 2021;7(1):24–30. https://doi.org/10.1016/j.aninu.2020.11.004DingSYanWMaYFangJ.The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim Nutr. 2021;7(1):24–30. https://doi.org/10.1016/j.aninu.2020.11.004Search in Google Scholar
Douglas P, Robertson S, Gay R, Hansell AL, Gant TW. A systematic review of the public health risks of bioaerosols from intensive farming. Int J Hyg Environ Health. 2018;221(2):134–173. https://doi.org/10.1016/j.ijheh.2017.10.019DouglasPRobertsonSGayRHansellALGantTW.A systematic review of the public health risks of bioaerosols from intensive farming. Int J Hyg Environ Health. 2018;221(2):134–173. https://doi.org/10.1016/j.ijheh.2017.10.019Search in Google Scholar
Feng P, Yang J, Zhao S, Ling Z, Han R, Wu Y, Salama ES, Kakade A, Khan A, Jin W, et al. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes. 2022;8(1):63. https://doi.org/10.1038/s41522-022-00326-8FengPYangJZhaoSLingZHanRWuYSalamaESKakadeAKhanAJinWHuman supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes. 2022;8(1):63. https://doi.org/10.1038/s41522-022-00326-8Search in Google Scholar
Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, Abomohra AE, El-Dalatony MM, et al. Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol. 2020;3(1):242. https://doi.org/10.1038/s42003-020-0968-3FengPYeZHanHLingZZhouTZhaoSVirkAKKakadeAAbomohraAEEl-DalatonyMMTibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol. 2020;3(1):242. https://doi.org/10.1038/s42003-020-0968-3Search in Google Scholar
Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on gut remediation of selected environmental contaminants: Possible roles of probiotics and gut microbiota. Nutrients. 2018;11(1):22. https://doi.org/10.3390/nu11010022FengPYeZKakadeAVirkAKLiXLiuP.A Review on gut remediation of selected environmental contaminants: Possible roles of probiotics and gut microbiota. Nutrients. 2018;11(1):22. https://doi.org/10.3390/nu11010022Search in Google Scholar
Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology. 2002;148(4):973–984. https://doi.org/10.1099/00221287-148-4-973FlynnSvan SinderenDThorntonGMHoloHNesIFCollinsJK.Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology. 2002;148(4):973–984. https://doi.org/10.1099/00221287-148-4-973Search in Google Scholar
Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989; 66(5):365–378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.xFullerR.Probiotics in man and animals. J Appl Bacteriol. 1989; 66(5):365–378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.xSearch in Google Scholar
Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, Jørgensen A, Perlman S, Lundvall L, Mamsen LS, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570(7759):107–111. https://doi.org/10.1038/s41586-019-1212-5GuiuJHannezoEYuiSDemharterSUlyanchenkoSMaimetsMJørgensenAPerlmanSLundvallLMamsenLSTracing the origin of adult intestinal stem cells. Nature. 2019;570(7759):107–111. https://doi.org/10.1038/s41586-019-1212-5Search in Google Scholar
Guo H, Wang P, Liu C, Zhou T, Chang J, Yin Q, Wang L, Jin S, Zhu Q, Lu F. Effects of compound mycotoxin detoxifier on alleviating aflatoxin B1-induced inflammatory responses in intestine, liver and kidney of broilers. Toxins. 2022;14(10):665. https://doi.org/10.3390/toxins14100665GuoHWangPLiuCZhouTChangJYinQWangLJinSZhuQLuF.Effects of compound mycotoxin detoxifier on alleviating aflatoxin B1-induced inflammatory responses in intestine, liver and kidney of broilers. Toxins. 2022;14(10):665. https://doi.org/10.3390/toxins14100665Search in Google Scholar
Han R, Khan A, Ling Z, Wu Y, Feng P, Zhou T, Salama ES, El-Dalatony MM, Tian X, Liu P, et al. Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. Ecotoxicol Environ Saf. 2022;231:113216. https://doi.org/10.1016/j.ecoenv.2022.113216HanRKhanALingZWuYFengPZhouTSalamaESEl-DalatonyMMTianXLiuPFeed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. Ecotoxicol Environ Saf. 2022;231:113216. https://doi.org/10.1016/j.ecoenv.2022.113216Search in Google Scholar
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug resistance and the prevention strategies in food borne bacteria: An update review. Adv Pharm Bull. 2019;9(3):335–347. https://doi.org/10.15171/apb.2019.041Hashempour-BaltorkFHosseiniHShojaee-AliabadiSTorbatiMAlizadehAMAlizadehM.Drug resistance and the prevention strategies in food borne bacteria: An update review. Adv Pharm Bull. 2019;9(3):335–347. https://doi.org/10.15171/apb.2019.041Search in Google Scholar
He Z, Li Y, Xiong T, Nie X, Zhang H, Zhu C. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front Microbiol. 2022;13:977087. https://doi.org/10.3389/fmicb.2022.977087HeZLiYXiongTNieXZhangHZhuC.Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front Microbiol. 2022;13:977087. https://doi.org/10.3389/fmicb.2022.977087Search in Google Scholar
Horie M, Ishiyama A, Fujihira-Ueki Y, Sillanpää J, Korhonen TK, Toba T. Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. J Appl Microbiol. 2002;92(3):396–403. https://doi.org/10.1046/j.1365-2672.2002.01539.xHorieMIshiyamaAFujihira-UekiYSillanpääJKorhonenTKTobaT.Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. J Appl Microbiol. 2002;92(3):396–403. https://doi.org/10.1046/j.1365-2672.2002.01539.xSearch in Google Scholar
Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal stem cells and immune cell relationships: Potential therapeutic targets for inflammatory bowel diseases. Front Immunol. 2020;11: 623691. https://doi.org/10.3389/fimmu.2020.623691HouQHuangJAyansolaHMasatoshiHZhangB.Intestinal stem cells and immune cell relationships: Potential therapeutic targets for inflammatory bowel diseases. Front Immunol. 2020;11: 623691. https://doi.org/10.3389/fimmu.2020.623691Search in Google Scholar
Hou Q, Ye L, Huang L, Yu Q. The research progress on intestinal stem cells and its relationship with intestinal microbiota. Front Immunol. 2017;8:599. https://doi.org/10.3389/fimmu.2017.00599HouQYeLHuangLYuQ.The research progress on intestinal stem cells and its relationship with intestinal microbiota. Front Immunol. 2017;8:599. https://doi.org/10.3389/fimmu.2017.00599Search in Google Scholar
Hu Y, Zhao Y, Jia X, Liu D, Huang X, Wang C, Zhu Y, Yue C, Deng S, Lyu Y. Lactic acid bacteria with a strong antioxidant function isolated from “Jiangshui”, pickles, and feces. Front Microbiol. 2023;14:1163662. https://doi.org/10.3389/fmicb.2023.1163662HuYZhaoYJiaXLiuDHuangXWangCZhuYYueCDengSLyuY.Lactic acid bacteria with a strong antioxidant function isolated from “Jiangshui”, pickles, and feces. Front Microbiol. 2023;14:1163662. https://doi.org/10.3389/fmicb.2023.1163662Search in Google Scholar
Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol. 2021;59(12):e0021321. https://doi.org/10.1128/jcm.00213-21HumphriesRBobenchikAMHindlerJASchuetzAN.Overview of changes to the clinical and laboratory standards institute performance standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol. 2021;59(12):e0021321. https://doi.org/10.1128/jcm.00213-21Search in Google Scholar
Ishaq M, Khan A, Bacha AS, Shah T, Hanif A, Ahmad AA, Ke W, Li F, Ud Din A, Ding Z, et al. Microbiota targeted interventions of probiotic Lactobacillus as an anti-ageing approach: A review. Antioxidants. 2021;10(12):1930. https://doi.org/10.3390/antiox10121930IshaqMKhanABachaASShahTHanifAAhmadAAKeWLiFUd DinADingZMicrobiota targeted interventions of probiotic Lactobacillus as an anti-ageing approach: A review. Antioxidants. 2021;10(12):1930. https://doi.org/10.3390/antiox10121930Search in Google Scholar
Jiang Z, Su W, Li W, Wen C, Du S, He H, Zhang Y, Gong T, Wang X, Wang Y, et al.Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. Anim Nutr. 2023;12:116–127. https://doi.org/10.1016/j.aninu.2022.09.006JiangZSuWLiWWenCDuSHeHZhangYGongTWangXWangYBacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. Anim Nutr. 2023;12:116–127. https://doi.org/10.1016/j.aninu.2022.09.006Search in Google Scholar
Jouany JP, Morgavi DP. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007; 1(10):1443–1466. https://doi.org/10.1017/S1751731107000742JouanyJPMorgaviDP.Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007; 1(10):1443–1466. https://doi.org/10.1017/S1751731107000742Search in Google Scholar
Khan AZ, Khan IU, Khan S, Afzal S, Hamid M, Tariq M, Haq IU, Ullah N, Khan MA, Bilal S, et al. Selenium-enriched probiotics improve hepatic protection by regulating pro-inflammatory cytokines and antioxidant capacity in broilers under heat stress conditions. J Adv Vet Anim Res. 2019;6(3):355–361. https://doi.org/10.5455/javar.2019.f354KhanAZKhanIUKhanSAfzalSHamidMTariqMHaqIUUllahNKhanMABilalSSelenium-enriched probiotics improve hepatic protection by regulating pro-inflammatory cytokines and antioxidant capacity in broilers under heat stress conditions. J Adv Vet Anim Res. 2019;6(3):355–361. https://doi.org/10.5455/javar.2019.f354Search in Google Scholar
Khomayezi R, Adewole D. Probiotics, prebiotics, and synbiotics: An overview of their delivery routes and effects on growth and health of broiler chickens. Worlds Poult Sci J. 2021;78(1):57–81. https://doi.org/10.1080/00439339.2022.1988804KhomayeziRAdewoleD.Probiotics, prebiotics, and synbiotics: An overview of their delivery routes and effects on growth and health of broiler chickens. Worlds Poult Sci J. 2021;78(1):57–81. https://doi.org/10.1080/00439339.2022.1988804Search in Google Scholar
Kudo H, Sasaki Y. Intracellular pH determination for the study of acid tolerance of lactic acid bacteria. In: Kanauchi M, editor. Lactic acid bacteria. Methods in Molecular Biology, vol 1887. New York (USA): Humana Press; 2019. p. 33–41. https://doi.org/10.1007/978-1-4939-8907-2_4KudoHSasakiY.Intracellular pH determination for the study of acid tolerance of lactic acid bacteria. In: KanauchiM, editor. Lactic acid bacteria. Methods in Molecular Biology, vol 1887. New York (USA): Humana Press; 2019. p. 33–41. https://doi.org/10.1007/978-1-4939-8907-2_4Search in Google Scholar
Kumari A, Angmo K, Monika, Bhalla TC. Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. J Food Sci Technol. 2016;53(5):2463–2475. https://doi.org/10.1007/s13197-016-2231-yKumariAAngmoK Monika, BhallaTC.Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. J Food Sci Technol. 2016;53(5):2463–2475. https://doi.org/10.1007/s13197-016-2231-ySearch in Google Scholar
Lazic SE, Clarke-Williams CJ, Munafò MR. What exactly is ‘N’ in cell culture and animal experiments? PLoS Biol. 2018; 16(4): e2005282. https://doi.org/10.1371/journal.pbio.2005282LazicSEClarke-WilliamsCJMunafòMR.What exactly is ‘N’ in cell culture and animal experiments?PLoS Biol. 2018; 16(4): e2005282. https://doi.org/10.1371/journal.pbio.2005282Search in Google Scholar
Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72(4):728–764. https://doi.org/10.1128/mmbr.00017-08LebeerSVanderleydenJDe KeersmaeckerSC.Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72(4):728–764. https://doi.org/10.1128/mmbr.00017-08Search in Google Scholar
Li M, Yang D, Mei L, Yuan L, Xie A, Yuan J. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS One. 2014;9(9):e105577. https://doi.org/10.1371/journal.pone.0105577LiMYangDMeiLYuanLXieAYuanJ.Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS One. 2014;9(9):e105577. https://doi.org/10.1371/journal.pone.0105577Search in Google Scholar
Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012;135(3):1914–1919. https://doi.org/10.1016/j.foodchem.2012.06.048LiSZhaoYZhangLZhangXHuangLLiDNiuCYangZWangQ.Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012;135(3):1914–1919. https://doi.org/10.1016/j.foodchem.2012.06.048Search in Google Scholar
Li W, Gao L, Huang W, Ma Y, Muhammad I, Hanif A, Ding Z, Guo X. Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans. Food Funct. 2022;13(6):3690–3703. https://doi.org/10.1039/d1fo03538jLiWGaoLHuangWMaYMuhammadIHanifADingZGuoX.Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans. Food Funct. 2022;13(6):3690–3703. https://doi.org/10.1039/d1fo03538jSearch in Google Scholar
Li W, Xu B, Wang L, Sun Q, Deng W, Wei F, Ma H, Fu C, Wang G, Li S. Effects of Clostridium butyricum on growth performance, gut microbiota and intestinal barrier function of broilers. Front Microbiol. 2021;12:777456. https://doi.org/10.3389/fmicb.2021.777456LiWXuBWangLSunQDengWWeiFMaHFuCWangGLiS.Effects of Clostridium butyricum on growth performance, gut microbiota and intestinal barrier function of broilers. Front Microbiol. 2021;12:777456. https://doi.org/10.3389/fmicb.2021.777456Search in Google Scholar
Lin MY, Chang FJ. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci. 2000;45(8):1617–1622. https://doi.org/10.1023/a:1005577330695LinMYChangFJ.Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci. 2000;45(8):1617–1622. https://doi.org/10.1023/a:1005577330695Search in Google Scholar
Liu B, Wang W, Deng Z, Ma C, Wang N, Fu C, Lambert H, Yan F. Antibiotic governance and use on commercial and smallholder farms in eastern China. Front Vet Sci. 2023;10:1128707. https://doi.org/10.3389/fvets.2023.1128707LiuBWangWDengZMaCWangNFuCLambertHYanF.Antibiotic governance and use on commercial and smallholder farms in eastern China. Front Vet Sci. 2023;10:1128707. https://doi.org/10.3389/fvets.2023.1128707Search in Google Scholar
Liu F, Bai J, Huang W, Li F, Ke W, Zhang Y, Xie D, Zhang B, Guo X. Characterization of a novel beta-cypermethrin-degrading strain of Lactobacillus pentosus 3-27 and its effects on bioremediation and the bacterial community of contaminated alfalfa silage. J Hazard Mater. 2022;423(Pt_A):127101. https://doi.org/10.1016/j.jhazmat.2021.127101LiuFBaiJHuangWLiFKeWZhangYXieDZhangBGuoX.Characterization of a novel beta-cypermethrin-degrading strain of Lactobacillus pentosus 3-27 and its effects on bioremediation and the bacterial community of contaminated alfalfa silage. J Hazard Mater. 2022;423(Pt_A):127101. https://doi.org/10.1016/j.jhazmat.2021.127101Search in Google Scholar
Lombardo SM, Vindedahl AM, Arnold WA. Determination of hydroxyl radical production from sulfide oxidation relevant to sulfidic porewaters. ACS Earth Space Chem. 2020;4(2):261–271. https://doi.org/10.1021/acsearthspacechem.9b00297LombardoSMVindedahlAMArnoldWA.Determination of hydroxyl radical production from sulfide oxidation relevant to sulfidic porewaters. ACS Earth Space Chem. 2020;4(2):261–271. https://doi.org/10.1021/acsearthspacechem.9b00297Search in Google Scholar
Luo Y, Chen G, Li B, Ji B, Guo Y, Tian F. Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. Innovative Food Sci Emerging Technol. 2009;10(2):215–221. https://doi.org/10.1016/j.ifset.2008.06.004LuoYChenGLiBJiBGuoYTianF.Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. Innovative Food Sci Emerging Technol. 2009;10(2):215–221. https://doi.org/10.1016/j.ifset.2008.06.004Search in Google Scholar
Mao J, Wang Y, Wang W, Duan T, Yin N, Guo T, Guo H, Liu N, An X, Qi J. Effects of Taraxacum mongolicum Hand.-Mazz. (dandelion) on growth performance, expression of genes coding for tight junction protein and mucin, microbiota composition and short chain fatty acids in ileum of broiler chickens. BMC Vet Res. 2022; 18(1):180. https://doi.org/10.1186/s12917-022-03278-5MaoJWangYWangWDuanTYinNGuoTGuoHLiuNAnXQiJ.Effects of Taraxacum mongolicum Hand.-Mazz. (dandelion) on growth performance, expression of genes coding for tight junction protein and mucin, microbiota composition and short chain fatty acids in ileum of broiler chickens. BMC Vet Res. 2022; 18(1):180. https://doi.org/10.1186/s12917-022-03278-5Search in Google Scholar
Monteagudo-Mera A, Rodríguez-Aparicio L, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR, Ferrero MÁ.In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods. 2012; 4(2):531–541. https://doi.org/10.1016/j.jff.2012.02.014Monteagudo-MeraARodríguez-AparicioLRúaJMartínez-BlancoHNavasaNGarcía-ArmestoMRFerreroMÁ.In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods. 2012; 4(2):531–541. https://doi.org/10.1016/j.jff.2012.02.014Search in Google Scholar
Murakami Y, Kawata A, Katayama T, Fujisawa S. Anti-inflammatory activity of the artificial antioxidants 2-tert-butyl-4-meth-oxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP), and their various combinations. In Vivo. 2015;29(2):197–206.MurakamiYKawataAKatayamaTFujisawaS.Anti-inflammatory activity of the artificial antioxidants 2-tert-butyl-4-meth-oxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP), and their various combinations. In Vivo. 2015;29(2):197–206.Search in Google Scholar
Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol. 2001;68(1):135–140. https://doi.org/10.1016/s0168-1605(01)00465-2OgawaMShimizuKNomotoKTanakaRHamabataTYamasakiSTakedaTTakedaY.Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol. 2001;68(1):135–140. https://doi.org/10.1016/s0168-1605(01)00465-2Search in Google Scholar
Otero MC, Nader-Macías ME. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci. 2006;96(1):35–46. https://doi.org/10.1016/j.anireprosci.2005.11.004OteroMCNader-MacíasME.Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci. 2006;96(1):35–46. https://doi.org/10.1016/j.anireprosci.2005.11.004Search in Google Scholar
Özkan ER, Demirci T, Öztürk H, Akin N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agric. 2020;101(7):2799–2808. https://doi.org/10.1002/jsfa.10909ÖzkanERDemirciTÖztürkHAkinN.Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J Sci Food Agric. 2020;101(7):2799–2808. https://doi.org/10.1002/jsfa.10909Search in Google Scholar
Qiao Y, Liu C, Guo Y, Zhang W, Guo W, Oleksandr K, Wang Z. Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult Sci. 2022;101(7):101905. https://doi.org/10.1016/j.psj.2022.101905QiaoYLiuCGuoYZhangWGuoWOleksandrKWangZ.Polysaccharides derived from Astragalus membranaceus and Glycyrrhiza uralensis improve growth performance of broilers by enhancing intestinal health and modulating gut microbiota. Poult Sci. 2022;101(7):101905. https://doi.org/10.1016/j.psj.2022.101905Search in Google Scholar
Racines MP, Solis MN, Šefcová MA, Herich R, Larrea-Álvarez M, Revajová V. An overview of the use and applications of Limosilactobacillus fermentum in broiler chickens. Microorganisms. 2023;11(8). https://doi.org/10.3390/microorganisms11081944RacinesMPSolisMNŠefcováMAHerichRLarrea-ÁlvarezMRevajováV.An overview of the use and applications of Limosilactobacillus fermentum in broiler chickens. Microorganisms. 2023;11(8). https://doi.org/10.3390/microorganisms11081944Search in Google Scholar
Ren Z, Hong Y, Huo Y, Peng L, Lv H, Chen J, Wu Z, Wan C. Prospects of probiotic adjuvant drugs in clinical treatment. Nutrients. 2022;14(22):4723. https://doi.org/10.3390/nu14224723RenZHongYHuoYPengLLvHChenJWuZWanC.Prospects of probiotic adjuvant drugs in clinical treatment. Nutrients. 2022;14(22):4723. https://doi.org/10.3390/nu14224723Search in Google Scholar
Reuben RC, Roy PC, Sarkar SL, Rubayet Ul Alam ASM, Jahid IK. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J Dairy Sci. 2020; 103(2):1223–1237. https://doi.org/10.3168/jds.2019-17092ReubenRCRoyPCSarkarSLRubayet Ul AlamASMJahidIK.Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J Dairy Sci. 2020; 103(2):1223–1237. https://doi.org/10.3168/jds.2019-17092Search in Google Scholar
Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot. 2006;69(8):2011–2015. https://doi.org/10.4315/0362-028X-69.8.2011Ruas-MadiedoPGueimondeMMargollesAde los Reyes-GavilánCGSalminenS.Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot. 2006;69(8):2011–2015. https://doi.org/10.4315/0362-028X-69.8.2011Search in Google Scholar
Salem R, El-Habashi N, Fadl SE, Sakr OA, Elbialy ZI. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ Toxicol Pharmacol. 2018;60:118–127. https://doi.org/10.1016/j.etap.2018.04.015SalemREl-HabashiNFadlSESakrOAElbialyZI.Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ Toxicol Pharmacol. 2018;60:118–127. https://doi.org/10.1016/j.etap.2018.04.015Search in Google Scholar
Šefcová MA, Larrea-Álvarez M, Larrea-Álvarez CM, Karaffová V, Ortega-Paredes D, Vinueza-Burgos C, Ševčíková Z, Levkut M, Herich R, Revajová V. The probiotic Lactobacillus fermentum Biocenol CCM 7514 moderates Campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals. 2021a; 11(1):235. https://doi.org/10.3390/ani11010235ŠefcováMALarrea-ÁlvarezMLarrea-ÁlvarezCMKaraffováVOrtega-ParedesDVinueza-BurgosCŠevčíkováZLevkutMHerichRRevajováV.The probiotic Lactobacillus fermentum Biocenol CCM 7514 moderates Campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals. 2021a; 11(1):235. https://doi.org/10.3390/ani11010235Search in Google Scholar
Šefcová MA, Ortega-Paredes D, Larrea-Álvarez CM, Mina I, Guapás V, Ayala-Velasteguí D, Leoro-Garzón P, Molina-Cuasapaz G, Vinueza-Burgos C, Revajová V, et al. Effects of Lactobacillus fermentum administration on intestinal morphometry and antibody serum levels in Salmonella-infantis-challenged chickens. Microorganisms. 2023;11(2):256. https://doi.org/10.3390/microorganisms11020256ŠefcováMAOrtega-ParedesDLarrea-ÁlvarezCMMinaIGuapásVAyala-VelasteguíDLeoro-GarzónPMolina-CuasapazGVinueza-BurgosCRevajováVEffects of Lactobacillus fermentum administration on intestinal morphometry and antibody serum levels in Salmonella-infantis-challenged chickens. Microorganisms. 2023;11(2):256. https://doi.org/10.3390/microorganisms11020256Search in Google Scholar
Šefcová MA, Santacruz F, Larrea-Álvarez CM, Vinueza-Burgos C, Ortega-Paredes D, Molina-Cuasapaz G, Rodríguez J, Calero-Cáceres W, Revajová V, Fernández-Moreira E, et al. Administration of dietary microalgae ameliorates intestinal parameters, improves body weight, and reduces thawing loss of fillets in broiler chickens: A pilot study. Animals. 2021b;11(12):3601. https://doi.org/10.3390/ani11123601ŠefcováMASantacruzFLarrea-ÁlvarezCMVinueza-BurgosCOrtega-ParedesDMolina-CuasapazGRodríguezJCalero-CáceresWRevajováVFernández-MoreiraEAdministration of dietary microalgae ameliorates intestinal parameters, improves body weight, and reduces thawing loss of fillets in broiler chickens: A pilot study. Animals. 2021b;11(12):3601. https://doi.org/10.3390/ani11123601Search in Google Scholar
Shao Y, Wang Y, Yuan Y, Xie Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ. 2021;798:149205. https://doi.org/10.1016/j.scitotenv.2021.149205ShaoYWangYYuanYXieY.A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ. 2021;798:149205. https://doi.org/10.1016/j.scitotenv.2021.149205Search in Google Scholar
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016; 167(4): 915–932. https:ZZdoLorgZ10.1016Zj.celL2016.10.027SharonGSampsonTRGeschwindDHMazmanianSK.The central nervous system and the gut microbiome. Cell. 2016; 167(4): 915–932. https://doi.org/10.1016/j.cell.2016.10.027Search in Google Scholar
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, Handa RJ. The hypothalamic-pituitary-adrenal axis: Development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci. 2020;14:601939. https://doi.org/10.3389/fnbeh.2020.601939ShengJABalesNJMyersSABautistaAIRoueinfarMHaleTMHandaRJ.The hypothalamic-pituitary-adrenal axis: Development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci. 2020;14:601939. https://doi.org/10.3389/fnbeh.2020.601939Search in Google Scholar
Singh AK, Tiwari UP, Mishra B, Jha R. Effects of in ovo delivered xylo- and mannan-oligosaccharides on growth performance, intestinal immunity, cecal short-chain fatty acids, and cecal microbiota of broilers. J Anim Sci Biotechnol. 2022;13(1):13. https://doi.org/10.1186/s40104-021-00666-zSinghAKTiwariUPMishraBJhaR.Effects of in ovo delivered xylo- and mannan-oligosaccharides on growth performance, intestinal immunity, cecal short-chain fatty acids, and cecal microbiota of broilers. J Anim Sci Biotechnol. 2022;13(1):13. https://doi.org/10.1186/s40104-021-00666-zSearch in Google Scholar
Śliżewska K, Cukrowska B, Smulikowska S, Cielecka-Kuszyk J. The effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B1. Toxins. 2019;11(2):112. https://doi.org/10.3390/toxins11020112ŚliżewskaKCukrowskaBSmulikowskaSCielecka-KuszykJ.The effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B1. Toxins. 2019;11(2):112. https://doi.org/10.3390/toxins11020112Search in Google Scholar
Takeda S, Yamasaki K, Takeshita M, Kikuchi Y, Tsend-Ayush C, Dashnyam B, Ahhmed AM, Kawahara S, Muguruma M. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim Sci J. 2011;82(4):571–579. https://doi.org/10.1111/j.1740-0929.2011.00874.xTakedaSYamasakiKTakeshitaMKikuchiYTsend-AyushCDashnyamBAhhmedAMKawaharaSMugurumaM.The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim Sci J. 2011;82(4):571–579. https://doi.org/10.1111/j.1740-0929.2011.00874.xSearch in Google Scholar
Talib N, Mohamad NE, Yeap SK, Hussin Y, Aziz MNM, Masarudin MJ, Sharifuddin SA, Hui YW, Ho CL, Alitheen NB. Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules. 2019;24(14):2606. https://doi.org/10.3390/molecules24142606TalibNMohamadNEYeapSKHussinYAzizMNMMasarudinMJSharifuddinSAHuiYWHoCLAlitheenNB.Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules. 2019;24(14):2606. https://doi.org/10.3390/molecules24142606Search in Google Scholar
Tang W, Xing Z, Hu W, Li C, Wang J, Wang Y. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol. 2016; 100(16): 7193–71202. https://doi.org/10.1007/s00253-016-7581-xTangWXingZHuWLiCWangJWangY.Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol. 2016; 100(16): 7193–71202. https://doi.org/10.1007/s00253-016-7581-xSearch in Google Scholar
Tang W, Xing Z, Li C, Wang J, Wang Y. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem. 2017;221:1642–1649. https://doi.org/10.1016/j.foodchem.2016.10.124TangWXingZLiCWangJWangY.Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem. 2017;221:1642–1649. https://doi.org/10.1016/j.foodchem.2016.10.124Search in Google Scholar
Thompson-Chagoyán OC, Maldonado J, Gil A. Aetiology of inflammatory bowel disease (IBD): Role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr. 2005;24(3):339–352. https://doi.org/10.1016/j.clnu.2005.02.009Thompson-ChagoyánOCMaldonadoJGilA.Aetiology of inflammatory bowel disease (IBD): Role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr. 2005;24(3):339–352. https://doi.org/10.1016/j.clnu.2005.02.009Search in Google Scholar
Tian M, He X, Feng Y, Wang W, Chen H, Gong M, Liu D, Clarke JL, van Eerde A. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics. 2021;10(5):539. https://doi.org/10.3390/antibiotics10050539TianMHeXFengYWangWChenHGongMLiuDClarkeJLvan EerdeA.Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics. 2021;10(5):539. https://doi.org/10.3390/antibiotics10050539Search in Google Scholar
Wang CY, Lin PR, Ng CC, Shyu YT. Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe. 2010;16(6):578–85. https://doi.org/10.1016/j.anaerobe.2010.10.003WangCYLinPRNgCCShyuYT.Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe. 2010;16(6):578–85. https://doi.org/10.1016/j.anaerobe.2010.10.003Search in Google Scholar
Wang Y, Wang B, Zhan X, Wang Y, Li W. Effects of glucose oxidase and its combination with B. amyloliquefaciens SC06 on intestinal microbiota, immune response and antioxidative capacity in broilers. Animal. 2022;16(3):100473. https://doi.org/10.1016/j.animal.2022.100473WangYWangBZhanXWangYLiW.Effects of glucose oxidase and its combination with B. amyloliquefaciens SC06 on intestinal microbiota, immune response and antioxidative capacity in broilers. Animal. 2022;16(3):100473. https://doi.org/10.1016/j.animal.2022.100473Search in Google Scholar
Wong A, Ngu DY, Dan LA, Ooi A, Lim RL. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J. 2015;14:95. https://doi.org/10.1186/s12937-015-0084-2WongANguDYDanLAOoiALimRL.Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J. 2015;14:95. https://doi.org/10.1186/s12937-015-0084-2Search in Google Scholar
Wu H, Ding C, Ma X, Gao Z, Liu S, Liu B, Song S. Microencapsulate probiotics (MP) promote growth performance and inhibit inflammatory response in broilers challenged with Salmonella typhimurium. Probiotics Antimicrob Proteins. 2024;16(2):623–635. https://doi.org/10.1007/s12602-023-10074-6WuHDingCMaXGaoZLiuSLiuBSongS.Microencapsulate probiotics (MP) promote growth performance and inhibit inflammatory response in broilers challenged with Salmonella typhimurium. Probiotics Antimicrob Proteins. 2024;16(2):623–635. https://doi.org/10.1007/s12602-023-10074-6Search in Google Scholar
Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int. 2003;36(9):949–957. https://doi.org/10.1016/S0963-9969(03)00104-2WuHCChenHMShiauCY.Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int. 2003;36(9):949–957. https://doi.org/10.1016/S0963-9969(03)00104-2Search in Google Scholar
Wu Y, Wang B, Zeng Z, Liu R, Tang L, Gong L, Li W. Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci. 2019;98(10):5028–5039. https://doi.org/10.3382/ps/pez226WuYWangBZengZLiuRTangLGongLLiW.Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Poult Sci. 2019;98(10):5028–5039. https://doi.org/10.3382/ps/pez226Search in Google Scholar
Wu Y, Yang F, Jiang W, Hu A, Xiong Z, Yang S, Cao P, Cao Z, Xiong Z, Cao H. Effects of compound probiotics on intestinal barrier function and caecum microbiota composition of broilers. Avian Pathol. 2022;51(5):465–475. https://doi.org/10.1080/03079457.2022.2100740WuYYangFJiangWHuAXiongZYangSCaoPCaoZXiongZCaoH.Effects of compound probiotics on intestinal barrier function and caecum microbiota composition of broilers. Avian Pathol. 2022;51(5):465–475. https://doi.org/10.1080/03079457.2022.2100740Search in Google Scholar
Wu Y, Ye Z, Feng P, Li R, Chen X, Tian X, Han R, Kakade A, Liu P, Li X.Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid. Gut Microbes. 2021;13(1):1–18. https://doi.org/10.1080/19490976.2021.1897211WuYYeZFengPLiRChenXTianXHanRKakadeALiuPLiX.Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid. Gut Microbes. 2021;13(1):1–18. https://doi.org/10.1080/19490976.2021.1897211Search in Google Scholar
Xu S, Liu T, Radji CA, Yang J, Chen L. Isolation, identification, and evaluation of new lactic acid bacteria strains with both cellular antioxidant and bile salt hydrolase activities in vitro. J Food Prot. 2016;79(11):1919–1928. https://doi.org/10.4315/0362-028X.JFP-16-096XuSLiuTRadjiCAYangJChenL.Isolation, identification, and evaluation of new lactic acid bacteria strains with both cellular antioxidant and bile salt hydrolase activities in vitro. J Food Prot. 2016;79(11):1919–1928. https://doi.org/10.4315/0362-028X.JFP-16-096Search in Google Scholar
Xu S, Wang F, Zou P, Li X, Jin Q, Wang Q, Wang B, Zhou Y, Tang L, Yu D, et al.Bacillus amyloliquefaciens SC06 in the diet improves egg quality of hens by altering intestinal microbiota and the effect is diminished by antimicrobial peptide. Front Nutr. 2022;9:999998. https://doi.org/10.3389/fnut.2022.999998XuSWangFZouPLiXJinQWangQWangBZhouYTangLYuDBacillus amyloliquefaciens SC06 in the diet improves egg quality of hens by altering intestinal microbiota and the effect is diminished by antimicrobial peptide. Front Nutr. 2022;9:999998. https://doi.org/10.3389/fnut.2022.999998Search in Google Scholar
Yaqoob MU, Wang G, Wang M. An updated review on probiotics as an alternative of antibiotics in poultry – A review. Anim Biosci. 2022;35(8):1109–1120. https://doi.org/10.5713/ab.21.0485YaqoobMUWangGWangM.An updated review on probiotics as an alternative of antibiotics in poultry – A review. Anim Biosci. 2022;35(8):1109–1120. https://doi.org/10.5713/ab.21.0485Search in Google Scholar
Yi H, Zhang L, Tuo Y, Han X, Du MJFc. A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control. 2010;21(4):426–430. https://doi.org/10.1016/j.foodcont.2009.07.002YiHZhangLTuoYHanXDuMJFc.A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control. 2010;21(4):426–430. https://doi.org/10.1016/j.foodcont.2009.07.002Search in Google Scholar
Zhang S, Lv J, Menghe B, Zhang H, Zhang L, Song J, Wang Z. [Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species] (in Chinese). Acta Microbiol Sin. 2009;49(2):257–261. https://doi.org/10.13343/j.cnki.wsxb.2009.02.017ZhangSLvJMengheBZhangHZhangLSongJWangZ.[Resistance of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ to reactive oxygen species] (in Chinese). Acta Microbiol Sin. 2009;49(2):257–261. https://doi.org/10.13343/j.cnki.wsxb.2009.02.017Search in Google Scholar
Zhang Y, Choi SH, Nogoy KM, Liang S. Review: The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal. 2021;15(8):100316. 10.1016/j.animal.2021.100316ZhangYChoiSHNogoyKMLiangS.Review: The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal. 2021;15(8):100316. https://doi.org/10.1016/j.animal.2021.100316Search in Google Scholar
Zhao Q, Guan J, Wang X. Intestinal stem cells and intestinal organoids. J Genet Genomics. 2020a;47(6):289–299. https://doi.org/10.1016/j.jgg.2020.06.005ZhaoQGuanJWangX.Intestinal stem cells and intestinal organoids. J Genet Genomics. 2020a;47(6):289–299. https://doi.org/10.1016/j.jgg.2020.06.005Search in Google Scholar
Zhao S, Feng P, Hu X, Cao W, Liu P, Han H, Jin W, Li X. Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid. iScience. 2022;25(10):105198. https://doi.org/10.1016/j.isci.2022.105198ZhaoSFengPHuXCaoWLiuPHanHJinWLiX.Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid. iScience. 2022;25(10):105198. https://doi.org/10.1016/j.isci.2022.105198Search in Google Scholar
Zhao Y, Zeng D, Wang H, Qing X, Sun N, Xin J, Luo M, Khalique A, Pan K, Shu G, et al. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics Antimicrob Proteins. 2020b;12(3):883–895. https://doi.org/10.1007/s12602-019-09597-8ZhaoYZengDWangHQingXSunNXinJLuoMKhaliqueAPanKShuGDietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics Antimicrob Proteins. 2020b;12(3):883–895. https://doi.org/10.1007/s12602-019-09597-8Search in Google Scholar
Zhong Y, Chen ZF, Dai X, Liu SS, Zheng G, Zhu X, Liu S, Yin Y, Liu G, Cai Z. Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. J Environ Manage. 2018;207:219–229. https://doi.org/10.1016/j.jenvman.2017.11.030ZhongYChenZFDaiXLiuSSZhengGZhuXLiuSYinYLiuGCaiZ.Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. J Environ Manage. 2018;207:219–229. https://doi.org/10.1016/j.jenvman.2017.11.030Search in Google Scholar
Zhou Y, Gong W, Xu C, Zhu Z, Peng Y, Xie C. Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol. 2022;13:997940. https://doi.org/10.3389/fmicb.2022.997940ZhouYGongWXuCZhuZPengYXieC.Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol. 2022;13:997940. https://doi.org/10.3389/fmicb.2022.997940Search in Google Scholar