This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414:782–787.ZimmetPAlbertiKGShawJGlobal and societal implications of the diabetes epidemicNature2001414782787Search in Google Scholar
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015;6(13):1246–1258.LeonBMMaddoxTMDiabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future researchWorld J Diabetes201561312461258Search in Google Scholar
Mayyas F, Alzoubi KH, Bonyan R. The role of spironolactone on myocardial oxidative stress in rat model of streptozotocin-induced diabetes. Cardiovasc Ther 2017;35(2):e12242.MayyasFAlzoubiKHBonyanRThe role of spironolactone on myocardial oxidative stress in rat model of streptozotocin-induced diabetesCardiovasc Ther2017352e12242Search in Google Scholar
Silva MAB, Bruder-Nascimento T, Cau SBA, Lopes RAM, Mestriner FLAC, Fais RS, et al. Spironolcatone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol 2015;6:269.SilvaMABBruder-NascimentoTCauSBALopesRAMMestrinerFLACFaisRSSpironolcatone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signalingFront Physiol20156269Search in Google Scholar
Silva MA, Cau SB, Lopes RA, Manzato CP, Neves KB, Bruder-Nascimento T, et al. Mineralocorticoid receptor blockade prevents vascular remodeling in a rodent model of type 2 diabetes mellitus. Clin Sci (Lond.) 2015;129(7):533–545.SilvaMACauSBLopesRAManzatoCPNevesKBBruder-NascimentoTMineralocorticoid receptor blockade prevents vascular remodeling in a rodent model of type 2 diabetes mellitusClin Sci (Lond.)20151297533545Search in Google Scholar
Delcayre C. and Silvestre JS. Aldosterone and the heart: towards a physiological function? Cardiovasc Res 1999;43(1):7–12.DelcayreCSilvestreJSAldosterone and the heart: towards a physiological function?Cardiovasc Res1999431712Search in Google Scholar
Patel BM, Kakadiya J, Goyal RK, Mehta AA. Effect of Spironolactone on Cardiovascular Complications Associated with Type-2 Diabetes in Rats. Exp Clin Endocrinol Diabetes 2013;121:441–447.PatelBMKakadiyaJGoyalRKMehtaAAEffect of Spironolactone on Cardiovascular Complications Associated with Type-2 Diabetes in RatsExp Clin Endocrinol Diabetes2013121441447Search in Google Scholar
Garg R, Rao AD, Baimas-George M, Hurwitz S, Foster C, Shah RV, et al. Mineralocorticoid receptor blockade improves coronary microvascular function in individuals with type 2 diabetes. Diabetes 2015;64(1):236–42.GargRRaoADBaimas-GeorgeMHurwitzSFosterCShahRVMineralocorticoid receptor blockade improves coronary microvascular function in individuals with type 2 diabetesDiabetes201564123642Search in Google Scholar
Vranic A, Simovic S, Ristic P, Nikolic T, Stojic I, Srejovic I, et al.. The acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2017;95(11):1343–1350.VranicASimovicSRisticPNikolicTStojicISrejovicIThe acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic ratsCan J Physiol Pharmacol2017951113431350Search in Google Scholar
Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden MR, Karuparthi PR, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the reninangiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 2007;148:3773–3780.StasSWhaley-ConnellAHabibiJAppeshLHaydenMRKaruparthiPRMineralocorticoid receptor blockade attenuates chronic overexpression of the reninangiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodelingEndocrinology200714837733780Search in Google Scholar
Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 2013;168:519–533.TodaNNakanishiSTanabeSAldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implicationsBr J Pharmacol2013168519533Search in Google Scholar
Hollenberg NK, Stevanovic R, Agarwal A, Lansang MC, Price DA, Laffel LM, et al. Plasma aldosterone concentration in the patient with diabetes mellitus. Kidney Int 2004;65:1435–1439.HollenbergNKStevanovicRAgarwalALansangMCPriceDALaffelLMPlasma aldosterone concentration in the patient with diabetes mellitusKidney Int20046514351439Search in Google Scholar
Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin Pharmacol Toxicol 2018;123(3):233–235.Tveden-NyborgPBergmannTKLykkesfeldtJBasic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studiesBasic Clin Pharmacol Toxicol20181233233235Search in Google Scholar
Pick E, Keisari Y. A simple colometric method for the measurement of hydrogen peroxide by cells in culture. J Immunol Methods 1980;38:161–170.PickEKeisariYA simple colometric method for the measurement of hydrogen peroxide by cells in cultureJ Immunol Methods198038161170Search in Google Scholar
Green LC, Wagner DA, Glogowski J, Skipper PI, Wishnok JS, Tannenbaum SR Analysis of nitrate, nitrite and (15N) nitrate in biological fluids. Anal Biochem 1982;126:131–138.GreenLCWagnerDAGlogowskiJSkipperPIWishnokJSTannenbaumSRAnalysis of nitrate, nitrite and (15N) nitrate in biological fluidsAnal Biochem1982126131138Search in Google Scholar
Auclair C, Voisin E. Nitroblue Tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRP Press, Boca Raton, 1985. pp 123–132.AuclairCVoisinENitroblue Tetrazolium reductionIn:GreenwaldRA(ed)Handbook of methods for oxygen radical researchCRP PressBoca Raton1985123132Search in Google Scholar
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.OhkawaHOhishiNYagiKAssay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal Biochem197995351358Search in Google Scholar
Hayat SA, Patel B, Khattar RS, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment Clinical Science 2004;107:539–557.HayatSAPatelBKhattarRSMalikRADiabetic cardiomyopathy: mechanisms, diagnosis and treatmentClinical Science2004107539557Search in Google Scholar
Li YW, Aeno WS. Diabetes Mellitus and Cardiovascular Disease. J Clinic Experiment Cardiol 2011;2:114.LiYWAenoWSDiabetes Mellitus and Cardiovascular DiseaseJ Clinic Experiment Cardiol20112114Search in Google Scholar
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595–602.RublerSDlugashJYuceogluYZKumralTBranwoodAWGrishmanANew type of cardiomyopathy associated with diabetic glomerulosclerosisAm J Cardiol197230595602Search in Google Scholar
Van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive - diabetic heart disease. Circulation 1990;82:848–85.Van HoevenKHFactorSMA comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive - diabetic heart diseaseCirculation19908284885Search in Google Scholar
Poornima IG, Parkih P, Shanon RP. Diabetic Cardiomyopathy: search for unifying hypoyhesis Circ Res 2006;98:596–605.PoornimaIGParkihPShanonRPDiabetic Cardiomyopathy: search for unifying hypoyhesisCirc Res200698596605Search in Google Scholar
Watanabe K, Thandavarayan RA, Harima M, Sari FR, Gurusamy N, Veeraveedu PT, et al. Role of Differential Signaling Pathways and Oxidative Stress in Diabetic Cardiomyopathy. Curr Cardiol Rev 2010;6:280–290.WatanabeKThandavarayanRAHarimaMSariFRGurusamyNVeeraveeduPTRole of Differential Signaling Pathways and Oxidative Stress in Diabetic CardiomyopathyCurr Cardiol Rev20106280290Search in Google Scholar
Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Molecular Endocrinol 2006;20:953–970.HunyadyLCattKJPleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin IIMolecular Endocrinol200620953970Search in Google Scholar
Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A. et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123–1132.FrustaciAKajsturaJChimentiCJakoniukILeriAMaseriAMyocardial cell death in human diabetesCirc Res20008711231132Search in Google Scholar
Robert V, Heymes C, Silvestre JS. Angiotensin AT1receptor subtype as a cardiac target of aldosterone: role in aldosterone salt induced fibrosis. Hypertension 1999;33:981–986.RobertVHeymesCSilvestreJSAngiotensin AT1receptor subtype as a cardiac target of aldosterone: role in aldosterone salt induced fibrosisHypertension199933981986Search in Google Scholar
Nagatomo Y, Meguro T, Ito H, Koide K, Anzai T, Fukuda K. et al. Significance of AT1 receptor independent activation of mineralocorticoid receptor in murine diabetic cardiomyopathy. PLoS One 2014;9(3):e93145.NagatomoYMeguroTItoHKoideKAnzaiTFukudaKSignificance of AT1 receptor independent activation of mineralocorticoid receptor in murine diabetic cardiomyopathyPLoS One201493e93145Search in Google Scholar
Verma S, Violet GY, Badiwala M, Anderson JT, McNiel LH. Working heart function in diabetes is not improved by spironolactone treatment Can J Physiol Pharmacol 2003;81:493–496.VermaSVioletGYBadiwalaMAndersonJTMcNielLHWorking heart function in diabetes is not improved by spironolactone treatmentCan J Physiol Pharmacol200381493496Search in Google Scholar
Ojeda-Cervantes M, Barrera-Chimal J, Alberú J, Pérez-Villalva R, Morales-Buenrostro LE, Bobadilla NA. Mineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: a double-blind, randomized pilot study. Am J Nephrol 2013;37(5):481–90.Ojeda-CervantesMBarrera-ChimalJAlberúJPérez-VillalvaRMorales-BuenrostroLEBobadillaNAMineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: a double-blind, randomized pilot studyAm J Nephrol201337548190Search in Google Scholar
Silva MA, Bruder-Nascimento T, Cau SB, Lopes RA, Mestriner FL, Fais RS, Touyz, RM, Tostes RC. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol 2015;6:269.SilvaMABruder-NascimentoTCauSBLopesRAMestrinerFLFaisRSTouyzRMTostesRCSpironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signalingFront Physiol20156269Search in Google Scholar
Kosugi T, Heining M, Nakayama T, Matsuo S, Nakagawa T. eNOS Knockout Mice with Advanced Diabetic Nephropathy Have Less Benefit from Renin-Angiotensin Blockade than from Aldosterone Receptor Antagonists. Am J Path 2010;176(2):619–629.KosugiTHeiningMNakayamaTMatsuoSNakagawaTeNOS Knockout Mice with Advanced Diabetic Nephropathy Have Less Benefit from Renin-Angiotensin Blockade than from Aldosterone Receptor AntagonistsAm J Path20101762619629Search in Google Scholar
Hayashi T, Shibata H, Kurihara I, Yokota K, Mitsuishi Y, Ohashi, K, et al. High Glucose Stimulates Mineralocorticoid Receptor Transcriptional Activity Through the Protein Kinase C β Signaling. Int Heart J 2017;58:794–802.HayashiTShibataHKuriharaIYokotaKMitsuishiYOhashiKHigh Glucose Stimulates Mineralocorticoid Receptor Transcriptional Activity Through the Protein Kinase C β SignalingInt Heart J201758794802Search in Google Scholar
Barbato JC, Mulrow PJ, Shapiro JI and Franco-Saenz R. Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension 2002;40(2):130–135.BarbatoJCMulrowPJShapiroJIFranco-SaenzRRapid effects of aldosterone and spironolactone in the isolated working rat heartHypertension2002402130135Search in Google Scholar
Haas MJ, Jurado-Flores M, Hammoud R, Feng V, Gonzales K, Onstead-Haas L, Mooradian AD. The Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion from Human Coronary Artery Endothelial Cells. Am J Therapeut 2019;26(3):e321–e332.HaasMJJurado-FloresMHammoudRFengVGonzalesKOnstead-HaasLMooradianADThe Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion from Human Coronary Artery Endothelial CellsAm J Therapeut2019263e321e332Search in Google Scholar
Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 2008;14:1370–1376.ShibataSNagaseMYoshidaSKawarazakiWKuriharaHTanakaHMiyoshiJModification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney diseaseNat Med20081413701376Search in Google Scholar
Kawakami-Moori F and Shimosawa T. Oxidative Stress and Mineralocorticoid Receptor Signaling in the Brain: Possible Therapeutic Targets for Dementia. Ann Clin Exp Hypertesion 2012;2(2):1015–1020.Kawakami-MooriFShimosawaTOxidative Stress and Mineralocorticoid Receptor Signaling in the Brain: Possible Therapeutic Targets for DementiaAnn Clin Exp Hypertesion20122210151020Search in Google Scholar