À propos de cet article

Citez

1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414:782–787.10.1038/414782a11742409Search in Google Scholar

2. Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015;6(13):1246-1258.10.4239/wjd.v6.i13.1246460017626468341Search in Google Scholar

3. Mayyas F, Alzoubi KH, Bonyan R. The role of spironolactone on myocardial oxidative stress in rat model of streptozotocin-induced diabetes. Cardiovasc Ther 2017;35(2): e12242.10.1111/1755-5922.1224227992114Search in Google Scholar

4. Silva MAB, Bruder-Nascimento T, Cau SBA, Lopes RAM, Mestriner FLAC, Fais RS, et al. Spironolcatone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol 2015;6:269.10.3389/fphys.2015.00269459351926500555Search in Google Scholar

5. Silva MA, Cau SB, Lopes RA, Manzato CP, Neves KB, Bruder-Nascimento T, et al. Mineralocorticoid receptor blockade prevents vascular remodeling in a rodent model of type 2 diabetes mellitus. Clin Sci (Lond.) 2015;129(7):533–545.10.1042/CS20140758Search in Google Scholar

6. Delcayre C. and Silvestre JS. Aldosterone and the heart: towards a physiological function? Cardiovasc Res 1999;43(1):7–12.10.1016/S0008-6363(99)00088-7Search in Google Scholar

7. Patel BM, Kakadiya J, Goyal RK, Mehta AA. Effect of Spironolactone on Cardiovascular Complications Associated with Type-2 Diabetes in Rats. Exp Clin Endocrinol Diabetes 2013;121:441–447.10.1055/s-0033-134516824026828Search in Google Scholar

8. Garg R, Rao AD, Baimas-George M, Hurwitz S, Foster C, Shah RV, et al. Mineralocorticoid receptor blockade improves coronary microvascular function in individuals with type 2 diabetes. Diabetes 2015;64(1):236-42.10.2337/db14-0670427480125125488Search in Google Scholar

9. Vranic A, Simovic S, Ristic P, Nikolic T, Stojic I, Srejovic I, et al.. The acute effects of different spironolactone doses on cardiac function in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2017;95(11):1343-1350.10.1139/cjpp-2017-005528746811Search in Google Scholar

10. Stas S, Whaley-Connell A, Habibi J, Appesh L, Hayden MR, Karuparthi PR, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the reninangiotensin- aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 2007;148:3773-3780.10.1210/en.2006-169117494996Search in Google Scholar

11. Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endotheliumderived NO: therapeutic implications. Br J Pharmacol 2013;168:519–533.10.1111/j.1476-5381.2012.02194.x357927723190073Search in Google Scholar

12. Hollenberg NK, Stevanovic R, Agarwal A, Lansang MC, Price DA, Laffel LM, et al. Plasma aldosterone concentration in the patient with diabetes mellitus. Kidney Int 2004;65:1435–1439.10.1111/j.1523-1755.2004.00524.x15086486Search in Google Scholar

13. 13.Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin Pharmacol Toxicol 2018;123(3):233-235.10.1111/bcpt.13059Search in Google Scholar

14. Pick E, Keisari Y. A simple colometric method for the measurement of hydrogen peroxide by cells in culture. J Immunol Methods 1980;38:161–170.10.1016/0022-1759(80)90340-3Search in Google Scholar

15. Green LC, Wagner DA, Glogowski J, Skipper PI, Wishnok JS, Tannenbaum SR Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 1982;126:131–138.10.1016/0003-2697(82)90118-XSearch in Google Scholar

16. Auclair C, Voisin E. Nitroblue Tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRP Press, Boca Raton, 1985. pp 123–132.Search in Google Scholar

17. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–358.10.1016/0003-2697(79)90738-3Search in Google Scholar

18. Hayat SA, Patel B, Khattar RS, Malik RA. Diabetic cardiomyopathy: mechanisms, diagnosis and treatment Clinical Science 2004;107:539–557.10.1042/CS20040057Search in Google Scholar

19. Li YW, Aeno WS. Diabetes Mellitus and Cardiovascular Disease. J Clinic Experiment Cardiol 2011;2:114.10.4172/2155-9880.1000114Search in Google Scholar

20. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595–602.10.1016/0002-9149(72)90595-4Search in Google Scholar

21. Van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive - diabetic heart disease. Circulation 1990;82:848–85.10.1161/01.CIR.82.3.8482394006Search in Google Scholar

22. Poornima IG, Parkih P, Shanon RP. Diabetic Cardiomyopathy: search for unifying hypoyhesis Circ Res 2006;98:596-605.10.1161/01.RES.0000207406.94146.c2Search in Google Scholar

23. Watanabe K, Thandavarayan RA, Harima M, Sari FR, Gurusamy N, Veeraveedu PT, et al. Role of Differential Signaling Pathways and Oxidative Stress in Diabetic Cardiomyopathy. Curr Cardiol Rev 2010;6:280-290.10.2174/157340310793566145308380922043204Search in Google Scholar

24. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Molecular Endocrinol 2006;20:953-970.10.1210/me.2004-053616141358Search in Google Scholar

25. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A. et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123–1132.10.1161/01.RES.87.12.112311110769Search in Google Scholar

26. Robert V, Heymes C, Silvestre JS. Angiotensin AT1receptor subtype as a cardiac target of aldosterone: role in aldosterone salt induced fibrosis. Hypertension 1999;33:981-986.10.1161/01.HYP.33.4.981Search in Google Scholar

27. Nagatomo Y, Meguro T, Ito H, Koide K, Anzai T, Fukuda K. et al. Significance of AT1 receptor independent activation of mineralocorticoid receptor in murine diabetic cardiomyopathy. PLoS One 2014;9(3):e93145.10.1371/journal.pone.0093145396398924664319Search in Google Scholar

28. Verma S, Violet GY, Badiwala M, Anderson JT, Mc Niel LH. Working heart function in diabetes is not improved by spironolactone treatment Can J Physiol Pharmacol 2003;81:493-496.10.1139/y03-041Search in Google Scholar

29. Ojeda-Cervantes M, Barrera-Chimal J, Alberú J, Pérez- Villalva R, Morales-Buenrostro LE, Bobadilla NA. Mineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: a double-blind, randomized pilot study. Am J Nephrol 2013;37(5):481-90.10.1159/00035053923635604Search in Google Scholar

30. Silva MA, Bruder-Nascimento T, Cau SB, Lopes RA, Mestriner FL, Fais RS, Touyz, RM, Tostes RC. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol 2015;6:269.10.3389/fphys.2015.00269459351926500555Search in Google Scholar

31. Kosugi T, Heining M, Nakayama T, Matsuo S, Nakagawa T. eNOS Knockout Mice with Advanced Diabetic Nephropathy Have Less Benefit from Renin-Angiotensin Blockade than from Aldosterone Receptor Antagonists. Am J Path 2010;176(2):619-629.10.2353/ajpath.2010.090578280807020042665Search in Google Scholar

32. Hayashi T, Shibata H, Kurihara I, Yokota K, Mitsuishi Y, Ohashi, K, et al. High Glucose Stimulates Mineralocorticoid Receptor Transcriptional Activity Through the Protein Kinase C β Signaling. Int Heart J 2017;58:794-802.10.1536/ihj.16-64928966330Search in Google Scholar

33. Barbato JC, Mulrow PJ, Shapiro JI and Franco-Saenz R. Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension 2002;40(2):130–135.10.1161/01.HYP.0000025879.29822.2412154102Search in Google Scholar

34. Haas MJ, Jurado-Flores M, Hammoud R, Feng V, Gonzales K, Onstead-Haas L, Mooradian AD. The Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion from Human Coronary Artery Endothelial Cells. Am J Therapeut 2019;26(3):e321-e332.10.1097/MJT.000000000000064829232287Search in Google Scholar

35. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 2008;14:1370-1376.10.1038/nm.187919029984Search in Google Scholar

36. Kawakami-Moori F and Shimosawa T. Oxidative Stress and Mineralocorticoid Receptor Signaling in the Brain: Possible Therapeutic Targets for Dementia. Ann Clin Exp Hypertesion 2012;2(2):1015-1020.Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other