1. bookVolumen 36 (2014): Edición 2 (June 2014)
Detalles de la revista
License
Formato
Revista
eISSN
2083-831X
ISSN
0137-6365
Primera edición
09 Nov 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

State of Strength in Massive Concrete Structure Subjected to Non-Mechanical Loads

Publicado en línea: 28 Feb 2015
Volumen & Edición: Volumen 36 (2014) - Edición 2 (June 2014)
Páginas: 37 - 43
Detalles de la revista
License
Formato
Revista
eISSN
2083-831X
ISSN
0137-6365
Primera edición
09 Nov 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] LéGER P., TINAWI R., MOUNZER N., Numerical simulation of concrete expansion in concrete dams affected by alkali-aggregate reaction: state–of–the–art, Canadian Journal of Civil Engineering, 1995, Vol. 22(4), 692–713.10.1139/l95-081Search in Google Scholar

[2] LI K., COUSSY O., Numerical assessment and prediction method for the chemico-mechanical deterioration of ASRaffected concrete structures, Canadian Journal of Civil Engineering, 2004, Vol. 31(3), 432–439.10.1139/l04-003Search in Google Scholar

[3] ALEKSANDROV Y.N., Analytical investigations of the performance of the dam at the Sayano-Shushenskaya HPP during an annual load cycle, Power Technology And Engineering - selective translations from gidrotekhnicheskoe stroitel'stvo and elektricheskie stantsii, 2006, Vol. 40, (No. 4), 224–228.10.1007/s10749-006-0052-2Search in Google Scholar

[4] DE SCHUTTER G., Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws, Computers & Structures, 2002, 80, 2035–2042.10.1016/S0045-7949(02)00270-5Search in Google Scholar

[5] PARVINI M., PIETRUSZCZAK S., GOCEVSKI V., Seismic analysis of hydraulic structures affected by alkali-aggregate reaction: a case study, Canadian Journal of Civil Engineering, 2001, Vol. 28(2), 332–338.10.1139/l00-116Search in Google Scholar

[6] LYDZBA D., RÓZAŃSKI A., SOBÓTKA M., An annual cycle of changes in water temperature as a cause of cracking in massive concrete hydraulic structures, AGH Journal of Mining and Geoengineering, 2012, Vol. 36, No. 2, 217–227.Search in Google Scholar

[7] BOLEY B.A., WEINER J.H., Theory of Thermal Stresses, Wiley, New York 1960, 586.Search in Google Scholar

[8] ELZEIN A., A three-dimensional boundary element=Laplace transform solution of uncoupled transient thermo-elasticity in non-homogeneous rock media, Commun. Numer. Meth. Engng., 2001, 17, 639–646.10.1002/cnm.431Search in Google Scholar

[9] LYDZBA D. et al., Report No. 6/2011, “SPR” Series, Institute of Geotechnics and Hydrotechnics, Wroclaw University of Technology, 2011.Search in Google Scholar

[10] ORTIZ M., A constitutive theory for the inelastic behavior of concrete, Mech. Mater., 1985, Vol. 4, (1), 67–93.10.1016/0167-6636(85)90007-9Search in Google Scholar

[11] KLISINSKI M., MRÓZ Z., Description of inelastic deformation and degradation of concrete, Int. J. Solids Struct., 1988, Vol. 24 (4), 391–416.10.1016/0020-7683(88)90070-4Search in Google Scholar

[12] PIETRUSZCZAK S., JIANG J., MIRZA F.A., An elastoplastic constitutive model for concrete, International Journal of Solids and Structures, 1988, Vol. 24, Issue 7, 705–722.10.1016/0020-7683(88)90018-2Search in Google Scholar

[13] PIETRUSZCZAK S., XU G., Brittle response of concrete as a localization problem, International Journal of Solids and Structures, 1995, Vol. 32, 1517–1533.10.1016/0020-7683(94)00231-KSearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo