1. bookVolumen 13 (2021): Edición 4 (December 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2543-831X
Primera edición
25 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Comparative Research of Central and Eastern European Startup Researches Based on Artificial Intelligence-Based Natural Language Processing

Publicado en línea: 31 May 2022
Volumen & Edición: Volumen 13 (2021) - Edición 4 (December 2021)
Páginas: 4 - 33
Recibido: 03 Dec 2021
Aceptado: 28 Dec 2021
Detalles de la revista
License
Formato
Revista
eISSN
2543-831X
Primera edición
25 Apr 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Objective: In our study, we analyze Central and Eastern European (CEE) scientific papers published in peer-reviewed scientific journals between 2015 and 2021. We examine what category systems and methods are used in Central and Eastern European start-up researches in the recent years.

Methodology: Our used methodology was structured literature review analysis and artificial intelligence-based natural language processing which is one of the most evolving methodological directions in economics and social sciences at present but it is very rarely used in review analysis of startup research.

Value Added: The NLP method has not been widely used for the analysis of the startup literature. Furthermore, our study is the first which analyzes CEE startups research with NLP technique.

Findings: Based on our results, it can be stated that CEE startup researches follow the big global startup research narratives. However, a specific conceptual network is also emerging which contains several shifts of emphasis compared to the directions of global research.

Keywords

JEL Classification

Aizawa, A. (2003). An Information-theoretic Perspective of tf–idf Measures. Information Processing & Management, 39(1), 45–65.10.1016/S0306-4573(02)00021-3 Search in Google Scholar

Angel, D. P. (1989). The Labor Market for Engineers in the US Semiconductor Industry. Economic Geography, 65, 99–112.10.2307/143775 Search in Google Scholar

Antretter, T., Blohm, I., Grichnik, D., & Wincent, J. (2019). Predicting new venture survival: a Twitter – based machine learning approach to measuring online legitimacy. Journal of Business Venturing Insights, 3(12), 22–33.10.1016/j.jbvi.2018.e00109 Search in Google Scholar

Aschmann, H. (1970). The Natural History of a Mine. Economic Geography, 46, 172–189.10.2307/142625 Search in Google Scholar

Barringer, B. R., Jones, F. F., & Neubaum, D. O. (2005). A Quantitative Content Analysis of the Characteristics of Rapid-Growth Firms and Their Founders. Journal of Business Venturing, 20(5), 663–687.10.1016/j.jbusvent.2004.03.004 Search in Google Scholar

Baumeister, R. F., & Leary, M. R. (1997). Writing Narrative Literature Reviews. Review of General Psychology, 1, 311–320. DOI: 10.1037/1089-2680.1.3.311.10.1037/1089-2680.1.3.311 Search in Google Scholar

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). Quanteda: An R Rackage for the Quantitative Analysis of Textual Data. Journal of Open Source Software, 30(3), 774. DOI: 10.21105/joss.00774.10.21105/joss.00774 Search in Google Scholar

Bussgang, J. (2010). Mastering the VC Game. London: Penguin. Search in Google Scholar

Cockayne, D. (2019). What Is a Startup Firm? A Methodological and Epistemological Investigation into research objects in economic geography. Geoforum, 107, 77–87.10.1016/j.geoforum.2019.10.009 Search in Google Scholar

Dellermann, D., Lipusch, N., Ebel, P., Popp, K. M., & Leimeister, J. M. (2017). Finding the Unicorn: Predicting Early Stage Startup Success through a Hybrid Intelligence Method. SSRN Electronic Journal, 12(2), 22–44, DOI: 10.2139/ssrn.3159123.10.2139/ssrn.3159123 Search in Google Scholar

Demil, B., Lecocq, X., Ricart, J. E., & Zott, C. (2015). Introduction to the SEJ Special Issue on Business Models: Business Models within the Domain of Strategic Entrepreneurship. Strategic Entrepreneurship Journal, 9(1), 1–11.10.1002/sej.1194 Search in Google Scholar

Feld, B., & Mendelson, J. (2016). Venture Deals. Hoboken: Wiley.10.1002/9781119259794 Search in Google Scholar

Fesser, H. R., & Willard, G. E. (1990). Founding Strategy and Performance: A Comparison of High and Low Growth High Tech Forms. Strategic Management Journal, 11(2), 87–98.10.1002/smj.4250110202 Search in Google Scholar

Florida, R. (2005). Cities and the Creative Class. London: Routledge.10.4324/9780203997673 Search in Google Scholar

Gill, R. (2002). Cool, Creative, and Egalitarian? Exploring Gender in Project-Based New Media Work in Europe. Information, Communication & Society, 5, 70–89.10.1080/13691180110117668 Search in Google Scholar

Glupker, J., Nair, V., Richman, B., Riener, K., & Sharma, A. (2019). Predicting Investor Success Using Graph Theory and Machine Learning. Journal of Investment Management, 17(1), 92–103. Search in Google Scholar

Gosztonyi, M. (2021). A Big data és a részvételiség hatása a tudományos megismerésre és oktatásra. In P. Furkó, É. Szathmári (Eds.), Tudomány, küldetés, társadalmi szerepvállalás: STUDIA CAROLIENSIA – A Károli Gáspár Református Egyetem 2020-as évkönyve. Budapest: L’Harmattan Kiadó. Search in Google Scholar

Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267–297.10.1093/pan/mps028 Search in Google Scholar

Harris, Z. S. (1954). Distributional structure. Papers in Structural and Transformational Linguistics. Dordrecht: Reidel. Search in Google Scholar

Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of the 8th conference on European chapter of the association for computational linguistics (pp. 174–181). Madrid, Spain. Search in Google Scholar

Hermes, S., Böhm, M., & Krcmar, H. (2019). Business Model Innovation and Stakeholder Exploring Mechanisms and Outcomes of Value Creation and Destruction. In T. Ludwig, V. Pipek (Eds.), Proceedings of the 14. Internationale Tagung Wirtschaftsinformatik (WI 2019). Siegen, Germany. Search in Google Scholar

Hjorth, F., Klemmensen, R., Hobolt, S., Hansen, M. E., & Kurrild-Klitgaard, P. (2015) Computers, Coders, and Voters: Comparing Automated Methods for Estimating Party Positions. Research & Politics, 2(2). DOI: 2053168015580476.10.1177/2053168015580476 Search in Google Scholar

Hwang, V., & Horowitt, G. (2012). The Rainforest: The Secret to Building the Next Silicon Valley. Los Altos Hills: Regenwald. Search in Google Scholar

Kim, S.-M., & Hovy, E. (2004, August 23–27). Determining the sentiment of opinions. In Proceedings of the 20th international conference on computational linguistics (COLING 2004) (pp. 1367–1373). Geneva, Switzerland.10.3115/1220355.1220555 Search in Google Scholar

Kuzminov, I., Bakhtin, P., Khabirova, E., Kotsemir, M., & Lavrynenko, A. (2018). Mapping the Radical Innovations in Food Industry: A Text Mining Study. Higher School of Economics Research Paper No. WP BRP 80/STI/2018. DOI: 10.2139/ssrn.3143721.10.2139/ssrn.3143721 Search in Google Scholar

Laver, M., Benoit, K., & Garry, J. (2003). Extracting Policy Positions from Political Texts Using Words as Data. American Political Science Review 97(2), 311–331.10.1017/S0003055403000698 Search in Google Scholar

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Annals of Internal Medicine, 151, W–65. DOI: 10.7326/0003-4819-151-4-200908180-00136.10.7326/0003-4819-151-4-200908180-00136 Search in Google Scholar

Liu, B. (2010). Sentiment Analysis and Subjectivity. Handbook of Natural Language Processing, 2(2010), 627–666. Search in Google Scholar

Markusen, A. (2003). Fuzzy Concepts, Scanty Evidence, Policy Distance: The Cas for Rigour and Policy Relevance in Critical Regional Studies. Regional Studies, 37, 701–717.10.1080/0034340032000108796 Search in Google Scholar

Marwick, A. (2013). Status Update: Celebrity, Publicity, and Branding in the Social Media Age. New Haven: Yale University Press. Search in Google Scholar

McRobbie, A. (2002). Clubs to Companies: Notes on the Decline of Political Culture in Speeded up Creative Worlds. Cultural Studies, 16, 516–531.10.1080/09502380210139098 Search in Google Scholar

Praag, M., & Versloot, P. H. (2007). What is the Value of Entrepreneurship? A Review of Recent Research. Small Business Economics, 29, 351–382. DOI: 10.1007/s11187-007-9074-x.10.1007/s11187-007-9074-x Search in Google Scholar

Prabowo, R., & Thelwall, M. (2009). Sentiment Analysis: A Combined Approach. Journal of Informetrics, 3(2), 143–157.10.1016/j.joi.2009.01.003 Search in Google Scholar

Ray, M. D., Villeneuve, P. Y., & Roberge, R. A. (1974). Functional Prerequisites, Spatial Diffusion, and Allometric Growth. Economic Geography, 50, 341–351.10.2307/143061 Search in Google Scholar

Saif, M., & Turney, P. D. (2013). Nrc emotion lexicon. National Research Council, Canada, 2. Search in Google Scholar

Santana, J., Hoover, R., & Vengadasubbu, M. (2017). Investor Commitment to Serial Entrepreneurs: A Multilayer Network Analysis. Social Networks, 48, 256–269.10.1016/j.socnet.2016.10.002 Search in Google Scholar

Saxenian, A. (1994). Regional Advantage: Culture and Competition in Silicon Valley and Route 128. Cambridge: Harvard University Press. Search in Google Scholar

Schmidt, W. H., Lippitt, G. L. (1967). Crises in a Developing Organization. Harvard Business Review, 45(6), 102–112. Search in Google Scholar

Schoenberger, E. (1986). The Cultural Crisis of the Firm. London: Blackwell. Search in Google Scholar

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1), 1–47.10.1145/505282.505283 Search in Google Scholar

Sebők, M., Ring, O., & Máté Á. (2021). Szövegbányászat és mesterséges intelligencia R-ben. Budapest: Typotex Kiadó. Search in Google Scholar

Slapin, J. B., & Proksch, S. (2008). A Scaling Model for Estimating Time-Series Party Positions from Texts. American Journal of Political Science, 52(3), 705–722.10.1111/j.1540-5907.2008.00338.x Search in Google Scholar

Proksch, S.-O., & Slapin, J. B. (2010). Position Taking in European Parliament Speeches. British Journal of Political Science, 52 (2010), 587–611. Search in Google Scholar

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14, 207–222. DOI: 10.1111/1467-8551.00375.10.1111/1467-8551.00375 Search in Google Scholar

Watanabe, K. (2021). Latent Semantic Scaling: A Semisupervised Text Analysis Technique for New Domains and Languages. Communication Methods and Measures, 15(2), 81–102.10.1080/19312458.2020.1832976 Search in Google Scholar

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), xiii–xxiii. Search in Google Scholar

Wennekers, S., & Thurik, R. (1999). Linking Entrepreneurship and Economic Growth. Small Business Economics, 13(1), 27–56. DOI: 10.1023/A:1008063200484.10.1023/A:1008063200484 Search in Google Scholar

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing Contextual Polarity in Phrase-level Sentiment Analysis. In Proceeding of the conference on empirical methods in natural language processing (EMNLP 2005) (pp. 347–354). Vancouver, BC, Canada.10.3115/1220575.1220619 Search in Google Scholar

Xu, R., Chen, H., & Zhao, J. L. (2017). Predicting Corporate Venture Capital Investment. In 38th International Conference on Information Systems (ICIS 2017): Transforming Society with Digital Innovation. Republic of Korea: Association for Information Systems. Search in Google Scholar

Yeung, H. W-C. (2019). Rethinking Mechanism and Process in the Geographical Analysis of Uneven Development. Dialogues in Human Geography, 9(3), 226–255.10.1177/2043820619861861 Search in Google Scholar

Young, L., & Soroka, S. (2012). Affective News: The Automated Coding of Sentiment in Political Texts. Political Communication, 29(2), 205–231.10.1080/10584609.2012.671234 Search in Google Scholar

Zacharakis, A., Reynolds, P. D., & Bygrave, W. D. (1999). National Entrepreneurship Assessment: United States of America. 1999 Executive Report. Kansas City, Mo.: Kauffman Center for Entrepreneurial Leadership. Search in Google Scholar

Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo