1. bookVolumen 11 (2021): Edición 2 (April 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Hardware Rough Set Processor Parallel Architecture in FPGA for Finding Core in Big Datasets

Publicado en línea: 29 Jan 2021
Volumen & Edición: Volumen 11 (2021) - Edición 2 (April 2021)
Páginas: 99 - 110
Recibido: 05 May 2020
Aceptado: 05 Nov 2020
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] Borowik, G.; Jankowski, J.; Kowalski K. Fast algorithm for feature extraction. Proceedings of SPIE 9662, In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Proceedings of SPIE 2015, pp. 1110–1117.10.1117/12.2205909Search in Google Scholar

[2] Choromański, M.; Grześ, T.; Hońko, P. Two FPGA Devices in the Problem of Finding Minimal Reducts. In Lecture Notes in Computer Science, Publisher: Springer, 2019, Vol. 11703, pp. 410–420.Search in Google Scholar

[3] Czołombitko, M.; Stepaniuk, J. Generating core based on discernibility measure and MapReduce. Proceedings of the Pattern recognition and machine intelligence: 6th International conference, PReMI 2015, Warsaw, Poland, June 30–July 3, 2015, Lecture Notes in Computer Science, vol. 9124, pp. 367–376.10.1007/978-3-319-19941-2_35Search in Google Scholar

[4] T. Geng et al., O3BNN-R: An Out-of-Order Architecture for High-Performance and Regularized BNN Inference, in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, 1 Jan. 2021, doi: 10.1109/TPDS.2020.3013637, pp. 199–213.Abierto DOISearch in Google Scholar

[5] Grześ T., Kopczyński M. Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation. In Lecture Notes in Computer Science, Publisher: Springer, 2019, Vol. 11499, pp. 495–506.Search in Google Scholar

[6] Y. Liang, L. Lu and J. Xie, OMNI: A Framework for Integrating Hardware and Software Optimizations for Sparse CNNs in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi: 10.1109/TCAD.2020.3023903.Abierto DOISearch in Google Scholar

[7] Z. -N. Li, C. Zhu, Y. -L. Gao, Z. -K. Wang and J. Wang, AlphaGo Policy Network: A DCNN Accelerator on FPGA in IEEE Access, doi: 10.1109/ACCESS.2020.3023739.Abierto DOISearch in Google Scholar

[8] Kanasugi, A.; Yokoyama, A. A basic design for rough set processor. In Proceedings of the 15th Annual Conference of Japanese Society for Artificial Intelligence, 2001.Search in Google Scholar

[9] Kopczyński, M.; Stepaniuk, J. Hardware Implementations of Rough Set Methods in Programmable Logic Devices. In Rough Sets and Intelligent Systems – Professor Zdzisław Pawlak in Memoriam, Intelligent Systems Reference Library 43, Heidelberg, Springer; 2013, pp. 309–321.10.1007/978-3-642-30341-8_16Search in Google Scholar

[10] Kopczyński, M.; Grześ, T.; Stepaniuk, J. FPGA in Rough-Granular Computing: Reduct Generation. In proceedings of the 2014 IEEE/WCI/ACM International Joint Conferences on Web Intelligence Vol. 2, Warsaw, IEEE Computer Society, 2014, pp. 364–370.10.1109/WI-IAT.2014.120Search in Google Scholar

[11] Kopczyński, M.; Grześ, T.; Stepaniuk, J. Generating core in rough set theory: Design and implementation on FPGA. In Lecture Notes in Computer Science Vol. 8537, Berlin, Springer-Verlag, 2014, pp. 209–216.Search in Google Scholar

[12] Kopczyński, M.; Grześ, T.; Stepaniuk, J. Computation of Cores in Big Datasets: An FPGA Approach. In Lecture Notes in Computer Science Vol. 9436, Berlin, Springer-Verlag, 2015, pp. 153–163.Search in Google Scholar

[13] Kopczyński, M.; Grześ, T.; Stepaniuk, J. Core for Large Datasets: Rough Sets on FPGA. Fundamenta Informaticae 2016, 147, pp. 241–259.10.3233/FI-2016-1407Search in Google Scholar

[14] Lewis, T.; Perkowski, M.; Jozwiak, L. Learning in Hardware: Architecture and Implementation of an FPGA-Based Rough Set Machine. In proceedings of the Euromicro, 25th Euromicro Conference (EUROMICRO ’99), Volume 1; 1999, pp. 13–26.10.1109/EURMIC.1999.794488Search in Google Scholar

[15] Lichman, M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science; 2013.Search in Google Scholar

[16] Muraszkiewicz, M.; Rybiński, H. Towards a Parallel Rough Sets Computer In: Rough Sets, Fuzzy Sets and Knowledge Discovery. Springer-Verlag; 1994, pp. 434–443.10.1007/978-1-4471-3238-7_51Search in Google Scholar

[17] Marz, N.; Warren, J.H. Big Data: Principles and best practices of scalable realtime data systems. Manning Publications Co. Greenwich; 2015.Search in Google Scholar

[18] N. Narsale and V. Agarwal, Implementation Of LEM2 algorithm On FPGA, 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2019, doi: 10.1109/ICECA.2019.8822143, pp. 1–5.Abierto DOISearch in Google Scholar

[19] Nguyen, S. H.; Nguyen H. S. Some Efficient Algorithms for Rough Set Methods. In Sixth International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems IPMU’1996, volume III, Granada, Spain, July 1–5 1996, pp 1451–1456.Search in Google Scholar

[20] Nguyen, H.S. Approximate Boolean Reasoning: Foundations and Applications in Data Mining. Transactions on Rough Sets V, Lecture Notes in Computer Science Vol. 4100, Berlin, Springer-Verlag; 2006, pp. 334–506.Search in Google Scholar

[21] Pawlak, Z. Elementary rough set granules: Toward a rough set processor. In Rough-Neurocomputing: Techniques for Computing with Words, Cognitive Technologies, Springer-Verlag, Berlin, Germany; 2004, p. 5–14.10.1007/978-3-642-18859-6_1Search in Google Scholar

[22] Pawlak, Z.; Skowron, A. Rudiments of rough sets. Information Sciences; 2007; 177(1), p. 3–27.10.1016/j.ins.2006.06.003Search in Google Scholar

[23] Stepaniuk, J. Knowledge discovery by application of rough set models. In Rough Set Methods and Applications. New Developments in Knowledge Discovery, Information Systems, Physica-Verlag, Heidelberg; 2000, p. 137–233.10.1007/978-3-7908-1840-6_5Search in Google Scholar

[24] Stepaniuk, J. Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer, 2008.Search in Google Scholar

[25] Stepaniuk, J.; Kopczyński, M.; Grześ, T. The First Step Toward Processor for Rough Set Methods. Fundamenta Informaticae 2013; 127, pp. 429–443.10.3233/FI-2013-919Search in Google Scholar

[26] Sun, L.; Xu, J.; Li, Y. A Feature Selection Approach of Inconsistent Decision Systems in Rough Set. Journal of Computers, vol. 9, Academy Publisher; 2014, pp. 1333–1340.10.4304/jcp.9.6.1333-1340Search in Google Scholar

[27] Tiwari, K.S.; Kothari, A.G. Design and Implementation of Rough Set Algorithms on FPGA: A Survey. IJARAI, 2014, 3, no. 9, pp. 14–23.10.14569/IJARAI.2014.030903Search in Google Scholar

[28] Zhang, J.; Wong, J.; Pan, Y.; Li, T. A parallel matrix-based method for computing approximations in incomplete information systems. In IEEE Transactions on Knowledge Data Engineering, 2015, 27, p. 326–339.10.1109/TKDE.2014.2330821Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo