Basal defoliation, salicylic acid and cyanocobalamin to ameliorate the physiological and biochemical characteristics of flood-irrigated ‘Crimson Seedless’ grapevines in a semi-arid Mediterranean climate
, , , , y
31 dic 2023
Acerca de este artículo
Categoría del artículo: ORIGINAL ARTICLE
Publicado en línea: 31 dic 2023
Páginas: 307 - 332
Recibido: 29 nov 2022
Aceptado: 26 jul 2023
DOI: https://doi.org/10.2478/fhort-2023-0023
Palabras clave
© 2023 Ahmed F. Abd El-Khalek et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
![Effect of BD alone or combined with FS of either SA or CCA on berry colour (red [A], pink [B], green [C]), hue angle (D), lightness (E), and anthocyanin contents (F) of ‘Crimson Seedless’ grapes. T1 = control, T2 = BDPB, T3 = BDPB + 200 mg · L–1 SA, T4 = BDPB + 20 mg · L–1 CCA, T5 = BDFB, T6 = BDFB + 200 mg · L–1 SA and T7 = BDFB + 20 mg · L–1 CCA. Values are the means of three replicates (n = 9) ± SD. Means with the same letters in each season are insignificantly different at p ≤ 0.05 using Tukey’s HSD test. BD, basal defoliation; BDFB, basal defoliation at full bloom; BDPB, basal defoliation at pre-bloom; CCA, cyanocobalamin; FS, foliar spray; HSD, honestly significant difference; SA, salicylic acid; SD, standard deviation.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471d13c215d2f6c89db1c80/j_fhort-2023-0023_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250913%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250913T105327Z&X-Amz-Expires=3600&X-Amz-Signature=03da3cacf052085d52b8e3684cf9bcf0b13b48407f8f5431c6e362a2d2b37bac&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Weather data of Al-Baramon, Mansoura, Dakahlia, Egypt from November 2019 to October 2021_
Season | Temperature (°C) | Humidity (%) | Rainfall (mm · month–1) | Wind speed (km · h–1) | Cloud (%) | Sun (h · month–1) | UV index | |
---|---|---|---|---|---|---|---|---|
November | 2019 | 24 | 57 | 0.0 | 11.2 | 9 | 358 | 6 |
2020 | 22 | 63 | 9.7 | 10.4 | 28 | 339 | 6 | |
December | 2019 | 18 | 62 | 12.2 | 13.2 | 23 | 360 | 5 |
2020 | 19 | 62 | 4.7 | 10.3 | 20 | 350 | 4 | |
January | 2020 | 14 | 70 | 9.6 | 14.0 | 32 | 349 | 4 |
2021 | 17 | 64 | 3.7 | 13.1 | 20 | 365 | 5 | |
February | 2020 | 16 | 69 | 9.6 | 12.3 | 32 | 308 | 4 |
2021 | 18 | 66 | 8.9 | 12.6 | 28 | 298 | 4 | |
March | 2020 | 19 | 63 | 20.6 | 14.7 | 24 | 345 | 7 |
2021 | 20 | 60 | 0.6 | 14.3 | 15 | 368 | 5 | |
April | 2020 | 23 | 60 | 0.9 | 13.4 | 16 | 356 | 7 |
2021 | 24 | 52 | 0.0 | 15.4 | 10 | 360 | 8 | |
May | 2020 | 28 | 51 | 0.6 | 14.3 | 11 | 367 | 7 |
2021 | 30 | 46 | 0.0 | 13.4 | 4 | 372 | 8 | |
June | 2020 | 30 | 56 | 0.1 | 13.6 | 8 | 360 | 8 |
2021 | 31 | 52 | 0.0 | 13.0 | 2 | 360 | 9 | |
July | 2020 | 33 | 63 | 0.0 | 12.6 | 9 | 372 | 8 |
2021 | 34 | 54 | 0.0 | 13.3 | 3 | 372 | 9 | |
August | 2020 | 33 | 64 | 0.0 | 12.9 | 5 | 372 | 8 |
2021 | 35 | 55 | 0.0 | 11.9 | 2 | 372 | 8 | |
September | 2020 | 32 | 65 | 0.0 | 12.2 | 6 | 359 | 7 |
2021 | 30 | 60 | 0.0 | 13.3 | 6 | 358 | 7 | |
October | 2020 | 28 | 61 | 14.1 | 11.1 | 11 | 369 | 6 |
2021 | 26 | 61 | 1.3 | 11.9 | 12 | 369 | 5 |
Soil and water analysis of the experimental site at Al-Baramon, Mansoura, Dakahlia, Egypt_
Soil depth (cm) | 0–30 | 30–60 | 60–90 | Water | |
---|---|---|---|---|---|
Clay (%) | 49.25 | 50.55 | 51.15 | Transparency (cm) | 132.5 |
Silt (%) | 27.69 | 26.72 | 26.11 | Permeability index (%) | 55.64 |
Sand (%) | 23.06 | 22.66 | 21.55 | Water quality index | 21.54 |
Texture | Clay | Clay | Clay | pH | 8.27 |
Field capacity (%) | 15.3 | 15.7 | 15.8 | Total dissolved salts (mg · L–1) | 204.9 |
Permanent wilting point (%) | 7.4 | 7.6 | 7.7 | EC (μmhos · cm–1) | 558.8 |
pH (1:2.5 extract) | 7.7 | 7.11 | 7.11 | O2 (%) | 95.8 |
Organic material (%) | 2.3 | 0.55 | 0.35 | CaCO3 (mg · L–1) | 100.6 |
EC (dS · m–1) [1:5 extract] | 0.61 | 0.61 | 0.61 | HCO3– (mg · L–1) | 159.5 |
CaCO3 (%) | 1.83 | 1.41 | 1.88 | CO32– (mg · L–1) | 7.0 |
HCO3– (meq · 100 g–1) | 0.30 | 0.37 | 0.40 | SO42- (mg · L–1) | 15.13 |
CO32– (meq · 100 g–1) | 0.0 | 0.0 | 0.0 | SiO2 (mg · L–1) | 1.21 |
SO42– (meq · 100 g–1) | 3.17 | 4.04 | 4.13 | Cl– (mg · L–1) | 32.4 |
Cl- (meq · 100 g–1) | 0.96 | 0.98 | 1.08 | Na+ (mg · L–1) | 29.2 |
Na+ (meq · 100 g–1) | 0.48 | 0.66 | 1.42 | Ca2+ (mg · L–1) | 27.8 |
Ca2+ (meq · 100 g–1) | 0.80 | 0.20 | 1.25 | Mg2+ (mg · L–1) | 14.7 |
Mg2+ (meq · 100 g–1) | 0.33 | 0.97 | 1.16 | N (mg · L–1) | 1.56 |
N (mg · kg–1) | 32 | 24 | 18 | P (mg · L–1) | 0.094 |
P (mg · kg–1) | 13 | 22 | 13 | K (mg · L–1) | 8.81 |
K (mg · kg–1) | 271 | 240 | 230 | Fe (mg · L–1) | 0.23 |
Fe (mg · kg–1) | 2.48 | 2.21 | 2.11 | Mn (mg · L–1) | 0.005 |
Mn (mg · kg–1) | 4.10 | 3.50 | 3.21 | Zn (mg · L–1) | 0.60 |
Zn (mg · kg–1) | 1.18 | 0.61 | 0.51 | Cu (mg · L–1) | 0.018 |
Cu (mg · kg–1) | 4.24 | 2.10 | 0.75 | Co (mg · L–1) | 1.56 |
Pb (mg · L–1) | 0.77 | ||||
B (mg · L–1) | 0.03 | ||||
Mo (mg · L–1) | 0.009 | ||||
Al (mg · L–1) | 0.03 | ||||
Ni (mg · L–1) | 0.014 | ||||
Se (mg · L–1) | 0.021 | ||||
As (mg · L–1) | 0.044 | ||||
V (mg · L–1) | 0.014 |