1. bookVolumen 26 (2022): Edición 2 (December 2022)
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Acceso abierto

Thermal, Pasting, and Hydration Properties of Flour from Novel Cassava Cultivars for Potential Applications in the Food Industry

Publicado en línea: 30 Dec 2022
Volumen & Edición: Volumen 26 (2022) - Edición 2 (December 2022)
Páginas: 237 - 248
Recibido: 27 Aug 2022
Aceptado: 10 Nov 2022
Detalles de la revista
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año

1. Abe-Inge, V., Agbenorhevi, J.K., Kpodo, F.M. & Adzinyo, O.A. (2018). Effect of different drying techniques on quality characteristics of African palmyra palm (Borassus aethiopum) fruit flour. Food Research, 2(4), 331-339. DOI: https://doi.org/10.26656/fr.2017.2(4).050.10.26656/fr.2017.2(4).050 Search in Google Scholar

2. Alamu, E.O., Maziya-Dixon, B., & Dixon, A.G. (2017). Evaluation of proximate composition and pasting properties of high-quality cassava flour (HQCF) from cassava genotypes (Manihot esculenta Crantz) of β-carotene-enriched roots. LWT - Food Science and Technology, 86, 501-506. DOI: https://doi.org/10.1016/j.lwt.2017. Search in Google Scholar

3. Aldana, A.S., & Quintero, A.F. (2013). Physicochemical characterization of two cassava (Manihot esculenta Crantz) starches and flours. Scientia Agroalimentaria Magazine, 1, 19-25. Search in Google Scholar

4. Amelework, A.B., Bairu, M.W., Maema, O., Venter, S.L., & Laing, M. (2021). Adoption and promotion of resilient crops for climate risk mitigation and import substitution: A case analysis of cassava for South African agriculture. Frontiers in Sustainable Food System, 5, Article 617783. DOI: 10.3389/fsufs.2021.617783. Abierto DOISearch in Google Scholar

5. AOAC. (2000). Official Methods of analysis of AOAC International. In Association of official analysis chemists international. Maryland, USA. Search in Google Scholar

6. Aristizábal, J., García, J. A., & Ospina, B. (2017). Refined cassava flour in bread making: A review. Engineering and Research, 37(1), 25-33. DOI: 10.15446/ing.investig.v37n1.57306. Abierto DOISearch in Google Scholar

7. Aryee, F., Oduro, I., Ellis, W., & Afuakwa, J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control, 17, 916-922. DOI: https://doi.org/10.1016/j.foodcont.2005. Search in Google Scholar

8. Bakare, H.A., Adegunwa, M.O., Akinribido, O.M., & Obadina, O.A. (2014). Proximate, baking, and sensory qualities of biscuits from wheat and fermented breadfruit (Artocarpus communis Frost) flour. Journal of Culinary Science and Technology, 12(4), 316-332. DOI: https://doi.org/10.1080/15428052.2014.904833.10.1080/15428052.2014.904833 Search in Google Scholar

9. Ceballos, H., Sánchez, T., Chávez, A.L., Iglesias, C., Debouck, D., Mafla, G., & Tohme, J. (2006). Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. Journal of Food Composition and Analysis, 19(6-7), 589-593. DOI: https://doi.org/10.1016/j.jfca.2005. Search in Google Scholar

10. Chatpapamon, C., Wandee, Y., Uttapap, D., Puttanlek, C., & Rungsardthong, V. (2019). Pasting properties of cassava starch modified by heat-moisture treatment under acidic and alkaline pH environments. Carbohydrate Polymers, 215, 338-347. https://doi.org/10.1016/j.carbpol.2019. Search in Google Scholar

11. Chevallier, S., Colonna, P., Della Valle, G., & Lourdin, D. (2000). Contribution of major ingredients during baking of biscuit dough systems. Journal of Cereal Science, 31(3), 241-252. DOI: https://doi.org/10.1006/jcrs.2000.0308.10.1006/jcrs.2000.0308 Search in Google Scholar

12. Chimphepo, L., Alamu, E.O., Monjerezi, M., Ntawuruhunga, P., & Saka, J.D. (2021). Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT - Food Science and Technology, 147, Article 111592. DOI: https://doi.org/10.1016/j.lwt.2021.111592.10.1016/j.lwt.2021.111592 Search in Google Scholar

13. Chisenga, S.M. (2019). Characterization of flour and starch from Zambian cassava cultivars and application in frozen wheat bread dough. PhD Thesis. South Africa: University of Kwa-Zulu Natal. Search in Google Scholar

14. Chisenga, S.M., Workneh, T.S., Bultosa, G., & Laing, M. (2019). Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia. AIMS Agriculture and Food, 4(4), 939-966. DOI: 10.3934/agrfood.2019.4.939. Abierto DOISearch in Google Scholar

15. De la Hera, E., Martinez, M., Oliete, B., & Gómez, M. (2013). Influence of flour particle size on quality of gluten-free rice cakes. Food and Bioprocess Technology, 6(9), 2280-2288. DOI 10.1007/s11947-012-0922-6. Abierto DOISearch in Google Scholar

16. Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416-422. DOI: https://doi.org/10.1016/j.ijbiomac.2016. Search in Google Scholar

17. Dudu, O.E., Oyedeji, A.B., Oyeyinka, S.A., & Ma, Y. (2019). Impact of steam-heat-moisture treatment on structural and functional properties of cassava flour and starch. International Journal of Biological Macromolecules, 126, 1056-1064. DOI: https://doi.org/10.1016/j.ijbiomac.2018. Search in Google Scholar

18. Dudu, O.E., Ma, Y., Olurin, T.O., Oyedeji, A.B., Oyeyinka, S.A., & Ogungbemi, J.W. (2021). Changes in structural and functional characteristics of cassava flour by additive complexations stimulated by hydrothermal conditions. Food Bioscience, 43, 101289. DOI: https://doi.org/10.1016/j.fbio.2021.101289.10.1016/j.fbio.2021.101289 Search in Google Scholar

19. Gil, J.L., & Buitrago, A.J.A. (2002). Cassava in animal feed. Cassava in the third millennium: Modern production, processing, utilization, and marketing. International Center for Tropical Agriculture, 527-69. Search in Google Scholar

20. Hasmadi, M., Noorfarahzilah, M., Noraidah, H., Zainol, M.K., & Jahurul, M.H.A. (2020). Functional properties of composite flour: A review. Food Research, 4(6), 1820-1831. DOI: https://doi.org/10.26656/fr.2017.4(6).419.10.26656/fr.2017.4(6).419 Search in Google Scholar

21. Iwe, M., Michael, N., Madu, N., Obasi, N., Onwuka, G., Nwabueze, T., & Onuh, J. (2017). Physicochemical and pasting properties high quality cassava flour (HQCF) and wheat flour blends. Agrotechnology, 6(2), 167. DOI: 10.4172/2168-9881.1000167. Abierto DOISearch in Google Scholar

22. Iwe, M.O., Onyeukwu, U., & Agiriga, A.N. (2016). Proximate, functional, and pasting properties of faro 44 rice, African yam bean and brown cowpea seeds composite flour. Cogent Food and Agriculture, 2(1), 1-10. DOI: 10.1080/23311932.2016.1142409. Abierto DOISearch in Google Scholar

23. Jensen, S., Skibsted, L.H., Kidmose, U., & Thybo, A.K. (2015). Addition of cassava flours in bread-making: Sensory and textural evaluation. LWT - Food Science and Technology, 60(1), 292-299. DOI: https://doi.org/10.1016/j.lwt.2014. Search in Google Scholar

24. Kaptso, K.G., Njintang, Y.N., Nguemtchouin, M.M.G., Scher, J., Hounhouigan, J., & Mbofung, C.M. (2015). Physicochemical and micro-structural properties of flours, starch and proteins from two varieties of legumes: bambara groundnut (Vigna subterranea). Journal of Food Science and Technology, 52(8), 4915-492. DOI: 10.1007/s13197-014-1580-7.451947826243911 Abierto DOISearch in Google Scholar

25. Katyal, M., Virdi, A.S., Kaur, A., Singh, N., Kaur, S., Ahlawat, A.K., & Singh, A.M. (2016). Diversity in quality traits amongst Indian wheat varieties I: Flour and protein characteristics. Food Chemistry, 194, 337-344. OI: https://doi.org/10.1016/j.foodchem.2015. Search in Google Scholar

26. Kaur, M., Kawaljit, S.S., & Narpinder, S. (2007). Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry, 104(1), 259-267. DOI: https://doi.org/10.1016/j.foodchem.2006. Search in Google Scholar

27. Kusumayanti, H., Handayani, N.A., & Santosa, H. (2015). Swelling power and water solubility of cassava and sweet potatoes flour. Procedia Environmental Sciences, 23, 164-167. DOI: https://doi.org/10.1016/j.proenv.2015. Search in Google Scholar

28. Lu, H., Guo, L., Zhang, L, Xie, C., Li, W., Gu, B., & Li, K. (2020). Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Science Nutrition, 8(1), 521-533. https://doi.org/10.1002/fsn3.1334.10.1002/fsn3.1334697750631993176 Search in Google Scholar

29. Nassar, N.M., & Sousa, M.V. (2007). Amino acid profile in cassava and its interspecific hybrid. Genetics and Molecular Research, 6(2), 292-297. Search in Google Scholar

30. Manano, J., Ogwok, P., & Byarugaba-Bazirake, G.W. (2017). Chemical composition of major cassava varieties in Uganda, targeted for industrialisation. Journal of Field Robotics, 7, 1-9. DOI: 10.5539/jfr.v7n1p1. Abierto DOISearch in Google Scholar

31. Montagnac, J.A., Davis, C.R., & Tanumihardjo, S.A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety, 8(3), 181-194. DOI: https://doi.org/10.1111/j.1541-4337.2009.00077.x.10.1111/j.1541-4337.2009.00077.x33467798 Search in Google Scholar

32. Maziya-Dixon, B., Adebowale, A.A., Onabanjo, O.O., & Dixon, A.G.O. (2005). Effect of variety and drying methods on physico-chemical properties of high-quality cassava flour from yellow cassava roots. In African Crop Science Conference Proceedings, 05-09 December 2005 (pp. 635-641). Kampala, Uganda,. Search in Google Scholar

33. Odey, G.N., & Lee, W.Y. (2020). Evaluation of the quality characteristics of flour and pasta from fermented cassava roots. International Journal of Food Science & Technology, 55(2), 813-822. DOI: https://doi.org/10.1111/ijfs.14364.10.1111/ijfs.14364 Search in Google Scholar

34. Okoye, J.I., & Obi, C.D. (2017). Nutrient composition and sensory properties of wheat-African bread fruit composite flour cookies. Sky Journal of Food Science, 6(3), 027-032. Search in Google Scholar

35. Onabanjo, O.O., Olayiwola, I.O., Adegunwa, M.O., Ighere, D.A., Dave-Omoregie, A.O., & Abaku, N.S. (2020). Functional and pasting characteristic of wheat, yellow maize and beniseed composite flour. Trends in Applied Sciences Research, 15, 187-192. DOI:10.3923/tasr.2020.187.192. Abierto DOISearch in Google Scholar

36. Onyango, C., Mutungi, C., Unbehend, G., & Lindhauer, M.G. (2011). Modification of gluten-free sorghum batter and bread using maize, potato, cassava, or rice starch. LWT - Food Science and Technology, 44, 681-686. DOI: https://doi.org/10.1016/j.lwt.2010. Search in Google Scholar

37. Oyeyinka, S.A., Adeloye, A.A., Smith, S.A., Adesina, B.O., & Akinwande, F.F. (2019). Physicochemical properties of flour and starch from two cassava varieties. Agrosearch, 19(1), 28-45. DOI: 10.4314/agrosh.v19i1.3. Abierto DOISearch in Google Scholar

38. Poonsrisawat, A., Wanlapatit, S., Wansuksri, R., Piyachomkwan, K., Paemanee, A., Gamonpilas, C., Eurwilaichitr, L., & Champreda, V. (2016). Synergistic effects of cell wall degrading enzymes on rheology of cassava root mash. Process Biochemistry, 51(12), 2104-2111. DOI: https://doi.org/10.1016/j.procbio.2016. Search in Google Scholar

39. Ramsookmohan, S., Venter, S., & Mellem, J.J. (2020). The effect of processing on the physicochemical properties and amino acid profile of flour from Amaranthus cruentus. Journal of Food Processing and Preservation, 44(9), Article e14677. DOI: https://doi.org/10.1111/jfpp.14677.10.1111/jfpp.14677 Search in Google Scholar

40. Rincón-Londoño, N., Vega-Rojas, L.J., Contreras-Padilla, M., Acosta-Osorio, A.A., & Rodríguez-García, M.E. (2016). Analysis of the pasting profile in corn starch: Structural, morphological, and thermal transformations, Part I. International Journal of Biological Macromolecules, 91, 106-114. DOI: https://doi.org/10.1016/j.ijbiomac.2016. Search in Google Scholar

41. Rojas, C.C., Nair, B., Herbas, A., & Bergenstahl, B. (2007). Proximal composition and mineral contents of six varieties of cassava (Mannihot Esculenta, Crantz), from Bolivia. Bolivian Journal of Chemistry, 24(1), 70–76. Search in Google Scholar

42. Saengchan, K., Nopharatana, M., Lerdlattaporn, R., & Songkasiri, W. (2015). Enhancement of starch-pulp separation in centrifugal-filtration process: Effects of particle size and variety of cassava root on free starch granule separation. Food and Bioproducts Processing, 95, 208-217. DOI: 10.1016/j.fbp.2015.05.008. Abierto DOISearch in Google Scholar

43. Shittu, T.A., Dixon, A., Awonorin, S.O., Sanni, L.O., & Maziya-Dixon, B. (2008). Bread from composite cassava-wheat flour. II: Effect of cassava genotype and nitrogen fertilizer on bread quality. Food Research International, 41, 569-578. DOI: https://doi.org/10.1016/j.foodres.2008. Search in Google Scholar

44. Twinomuhwezi, H., Awuchi, C.G., & Rachael, M. (2020). Comparative study of the proximate composition and functional properties of composite flours of amaranth, rice, millet, and soybean. American Journal of Food Science and Nutrition, 6(1), 6-19. Search in Google Scholar

45. Uchechukwu-Agua, A.D., Caleb, O.J., Manley, M., & Opara, U.L. (2015). Effects of storage conditions and duration on physicochemical and microbial quality of the flour of two cassava cultivars (TME 419 and UMUCASS 36). CyTA-Journal of Food, 13(4), 635-645. DOI: https://doi.org/10.1080/19476337.2015.1029524.10.1080/19476337.2015.1029524 Search in Google Scholar

46. Udoro, E.O., Anyasi, T.A., & Jideani, A.I.O. (2020). Characterization of the root and flour of South African Manihot esculenta crantz landraces and their potential end-use properties. International Journal of Food Properties, 23(1), 820-838. DOI: https://doi.org/10.1080/10942912.2020.1759625.10.1080/10942912.2020.1759625 Search in Google Scholar

47. Vamadevan, V., & Bertoft, E. (2020). Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 103,105663. DOI: https://doi.org/10.1016/j.foodhyd.2020.105663.10.1016/j.foodhyd.2020.105663 Search in Google Scholar

48. Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke, 67(1-2), 14-29.10.1002/star.201300238 Search in Google Scholar

49. Yuan, T.Z., Liu, S., Reimer, M., Isaak, C., & Ai, Y. (2021). Evaluation of pasting and gelling properties of commercial flours under high heating temperatures using rapid visco analyzer 4800. Food Chemistry, 344, Article 128616. DOI: https://doi.org/10.1016/j.foodchem.2020.128616.10.1016/j.foodchem.2020.12861633243559 Search in Google Scholar

50. Zhang, Z., Li, E., Fan, X., Yang, C., Ma, H., & Gilbert, R.G. (2020). The effects of the chain-length distributions of starch molecules on rheological and thermal properties of wheat flour paste. Food Hydrocolloids, 101, Article 105563. DOI: https://doi.org/10.1016/j.foodhyd.2019.105563.10.1016/j.foodhyd.2019.105563 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo