Acceso abierto

Optimization Research on Interactive Methods of Ideological and Political Education in Colleges and Universities under Intelligent Teaching Environment

  
19 mar 2025

Cite
Descargar portada

Figure 1.

Model development process
Model development process

Figure 2.

Model build and optimization
Model build and optimization

Figure 3.

Automatic online modeling process
Automatic online modeling process

Figure 4.

Processing framework based on message mechanism
Processing framework based on message mechanism

Figure 5.

The processing framework of the message mechanism
The processing framework of the message mechanism

Figure 6.

PM-DNN noise reduction algorithm model
PM-DNN noise reduction algorithm model

Figure 7.

The overlapping frame of the speech signal
The overlapping frame of the speech signal

Figure 8.

Process of extracting gene frequency
Process of extracting gene frequency

Figure 9.

The process of extracting the resonance peak
The process of extracting the resonance peak

Figure 10.

MEL’s descent spectrum extraction process
MEL’s descent spectrum extraction process

Figure 11.

LSTM unit structure
LSTM unit structure

Figure 12.

The comparison of each emotion in the CASIA and Emo-DB data sets
The comparison of each emotion in the CASIA and Emo-DB data sets

Figure 13.

Interactive fragment one emotional changes
Interactive fragment one emotional changes

Figure 14.

Interactive fragment two emotional changes
Interactive fragment two emotional changes

Figure 15.

Interactive fragment three emotional changes
Interactive fragment three emotional changes

Figure 16.

Interactive fragment four emotional changes
Interactive fragment four emotional changes

Figure 17.

Interactive fragment five emotional changes
Interactive fragment five emotional changes

Figure 18.

Interactive fragment six emotional changes
Interactive fragment six emotional changes

Figure 19.

Class A class ideological and political class
Class A class ideological and political class

Different methods are compared in the Emo-DB data concentration accuracy

Experimental group Data set Processing method Accuracy rate
A Emo-DB 3D-CRNN 82.2%
B Emo-DB Improved speech processing+2-DCNN 83.9%
C Emo-DB DCNN_LSTM 81.1%
D Emo-DB DCNN_DTPM 83.9%
E Emo-DB ML ELM_AE 81.4%
F Emo-DB Ours 87.2%

Video class case basic information statistics

Class Province Teacher Number The Total Number Of Actions (N) Serial Behavior Number (G) Behavioral Conversion Rate (G-1)/N Teaching Model
Class 1 Guizhou A1 79 26 0.32 Interactive type
Jiangsu A2 78 35 0.44 Dialog type
Shanghai A3 72 26 0.35 Interactive type
Ningxia A4 74 24 0.31 Interactive type
Shaanxi A5 80 35 0.43 Dialog type
Sichuan A6 76 29 0.37 Interactive type
Xinjiang A7 72 25 0.33 Interactive type
Class 2 Anhui B1 82 37 0.44 Dialog type
Beijing B2 84 22 0.25 Interactive type
Hupei B3 80 21 0.25 Interactive type
Jilin B4 87 23 0.25 Interactive type
Jiangxi B5 77 39 0.49 Dialog type
Liaoning B6 83 29 0.34 Interactive type
Qinghai B7 82 29 0.34 Interactive type
Class 3 Beijing C1 79 32 0.39 Interactive type
Guangxi C2 66 34 0.50 Dialog type
Hainan C3 71 23 0.31 Practice type
Heilongjiang C4 82 19 0.22 Interactive type
Inner Mongolia C5 83 29 0.34 Interactive type
Yunnan C6 83 23 0.27 Interactive type
Chongqing C7 78 27 0.33 Interactive type
Class 4 Fujian D1 71 26 0.35 Interactive type
Guangdong D2 80 31 0.38 Interactive type
Hebei D3 86 31 0.35 Interactive type
Henan D4 78 18 0.22 Practice type
Hunan D5 75 26 0.33 Interactive type
Tianjin D6 81 38 0.46 Dialog type
Zhejiang D7 77 27 0.34 Interactive type

The residual difference of the interaction behavior of teachers and students

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3.89 1.27 -0.82 -1.88 -0.61 5.87 0.89 0.14 0.43 -0.96 0.57 -1.9 -0.66 1.38
2 1.28 1 0.3 -0.63 3.35 4.5 -1.25 1.15 -1.52 1.4 -0.98 -1.54 4.6 1.99
3 1.08 -0.72 -0.74 0.26 -0.36 -0.68 1.53 0.42 0.49 1.11 1.46 0.91 -1.69 0.18
4 4.52 -1.17 4.85 11.87 0.06 2 -1.74 0.73 -1.82 -1.55 -0.99 -0.4 -0.14 0.75
5 -0.68 1.98 1.06 -1.03 21.21 -0.71 -0.33 -1.91 0.33 1.49 -0.41 0.2 -0.53 -1.66
6 -0.36 1.59 1.19 -0.68 1.75 4.47 -1.4 0.08 0.55 -1.31 0.19 -0.82 1.84 -1.28
7 0.01 0.91 -0.8 1.21 1.18 -1.35 22.84 -0.51 -0.38 -1.78 -0.71 3.25 -1.42 1.13
8 0.26 1.2 0.25 3.5 1.16 -0.7 0.04 -0.85 -0.08 -1.38 0.85 1.3 0.86 1.38
9 0.83 0.72 -1.98 1.63 0.34 1.56 1.79 -1.51 8.45 4.55 0.45 -1.91 -1.09 1.77
10 1.32 -0.76 0.42 -1.94 1.79 -1.13 -1.88 -1.61 3.6 12.84 -0.64 0.58 0.12 0.91
11 -0.74 -0.55 -1.25 0.45 -1.53 0.9 1.66 -0.89 -1.2 1.27 16.54 -0.45 -0.6 0.07
12 5.64 0.16 -0.17 -1.97 -1.16 -1.95 0.58 -0.44 1.09 -1.88 -1.95 4.87 -0.29 -1.56
13 1.45 0.87 -1.75 1.6 -0.68 3.28 -0.06 0.53 -1.91 -1.87 0.29 -0.02 5.21 -1.86
14 -1.87 0.79 1.05 0.99 -0.17 0.02 -1.67 0.24 -0.7 1.77 0.56 3.64 4.05 0.57

Different methods are compared in the casia data concentration accuracy

Experimental group Data set Processing method Accuracy rate
A CASIA 3D-DCNN 52.6%
B CASIA RestNet 83.4%
C CASIA Data enhancement+DCNN+LSTM 75.1%
D CASIA CNN+BLSTM 70.2%
E CASIA Ours 89.8%