1. bookVolumen 70 (2020): Edición 4 (December 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

HPLC method development for fampridine using Analytical Quality by Design approach

Publicado en línea: 13 May 2020
Volumen & Edición: Volumen 70 (2020) - Edición 4 (December 2020)
Páginas: 465 - 482
Aceptado: 20 Nov 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. C. A. Dendrou, L. Fugger and M. A. Friese, Immunopathology of multiple sclerosis, Nat. Rev. Immunol. 15 (2015) 545–558; https://doi.org/10.1038/nri387110.1038/nri3871Search in Google Scholar

2. A. Lugaresi, Pharmacology and clinical efficacy of dalfampridine for treating multiple sclerosis, Expert Opin. Drug Metab. Toxicol.11 (2014) 295–306; https://doi.org/10.1517/17425255.2015.99331510.1517/17425255.2015.993315Search in Google Scholar

3. S. Weir, R. Torkin and H. R. Henney, Pharmacokinetic profile of dalfampridine extended release: clinical relevance in patients with multiple sclerosis, Curr. Med. Res. Opin. 29 (2012) 1627–1636; https://doi.org/10.1185/03007995.2012.74922110.1185/03007995.2012.749221Search in Google Scholar

4. W. A. Coetzee, Y. Amarillo, J. Chiu, A. Chow, D. Lau, T. McCormack, H. Moreno, M. S. Nadal, A. Ozaita, D. Pountney, M. Saganich, E. V. S. de Miera and B. Rudy, Molecular diversity of K+ channels, Ann. N. Y. Acad. Sci. 868 (1999) 233–255.10.1111/j.1749-6632.1999.tb11293.xSearch in Google Scholar

5. A. D. Goodman, T. R. Brown, L. B. Krupp, R. T. Schapiro, S. R. Schwid, R. Cohen, L. M. Marinucci and A. R. Blight, Sustained-release oral fampridine in multiple sclerosis: a randomised, doubleblind, controlled trial, Lancet373 (2009) 732–738; https://doi.org/10.1016/S0140-6736(09)60442-610.1016/S0140-6736(09)60442-6Search in Google Scholar

6. A. D. Goodman, T. R. Brown, K. R. Edwards, L. B. Krupp, R. T. Schapiro, R. Cohen, L. N. Marinucci and A. R. Blight, A phase 3 trial of extended release oral dalfampridine in multiple sclerosis, Ann. Neurol.68 (2010) 494–502; https://doi.org/10.1002/ana.2224010.1002/ana.2224020976768Search in Google Scholar

7. US Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Application Number 22-250s000, Approval Letter, FDA, Silver Spring (MD) 2010; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022250s000_Approv.pdf; last access date June 15, 2019Search in Google Scholar

8. European Medicines Agency (EMA), Committee for Medicinal Products for Human Use (CHMP), Summary of Opinion (Initial Authorisation) for Fampyra (Fampridine), May 2011; https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-fampyra_en.pdf; last access date June 18, 2019Search in Google Scholar

9. V. K. Redasani, G. L. Shaikh and S. S. Surana, Development and validation of spectroscopic methods for the estimation of dalfampridine in bulk and in tablet formulation, Anal. Chem. Indian J. 14 (2014) 37–41.Search in Google Scholar

10. S. Thomas, S. Shandilya, A. Bharti and A. Agarwal, A stability indicating simultaneous dual wavelength UV-HPLC method for the determination of potential impurities in fampridine active pharmaceutical ingredient, J. Pharm. Biomed. Anal.58 (2012) 136–140; https://doi.org/10.1016/j.jpba.2011.09.00910.1016/j.jpba.2011.09.00922000073Search in Google Scholar

11. C. Babu, K. N. Rao, N. Devanna and K. S Reddy, Development and validation of stability indicating reversed phase high performance liquid chromatographic method for the determination of related substances in fampridine drug substance and tablet dosage forms, Asian J. Pharm. Clin. Res. 10 (2017) 334–338.10.22159/ajpcr.2017.v10i10.19796Search in Google Scholar

12. N. R. Dharani, K. Padmini and S. Sumakala, Stability indicating RP-HPLC method development and validation for estimation of dalfampridine in its bulk and formulation, Int. J. Adv. Res.4 (2016) 184–191; https://doi.org/10.21474/IJAR01/147110.21474/IJAR01/1471Search in Google Scholar

13. M. Jain, V. Srivastava, R. Kumar, V. Dangi, S. G. Hiriyanna, A. Kumar and P. Kumar, Determination of five potential genotoxic impurities in dalfampridine using liquid chromatography, J. Pharm. Biomed. Anal.133 (2017) 27–31; https://doi.org/10.1016/j.jpba.2016.10.013.10.1016/j.jpba.2016.10.01327969064Search in Google Scholar

14. W. Smith, S. Swan, T. Marbury and H. Henney, Single-dose pharmacokinetics of sustained-release fampridine (fampridine-SR) in healthy volunteers and adults with renal impairment, J. Clin. Pharmacol. 50 (2010) 151–159; https://doi.org/10.1177/009127000934485710.1177/009127000934485719966074Search in Google Scholar

15. A. Suneetha and R. K. Raja, High-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of fampridine, paroxetine, and quinidine in rat plasma: Application to in vivo perfusion study, J. Food. Drug Anal. 24 (2016) 866–875; https://doi.org/10.1016/j.jfda.2016.03.00410.1016/j.jfda.2016.03.00428911626Search in Google Scholar

16. A. Suneetha and R. K. Raja, Comparison of LC-UV and LC–MS methods for simultaneous determination of teriflunomide, dimethyl fumarate and fampridine in human plasma: application to rat pharmacokinetic study, Biomed. Chromatogr.30 (2016) 1371–1377; https://doi.org/10.1002/bmc.369410.1002/bmc.369426849839Search in Google Scholar

17. United States Pharmacopeia/National Formulary (USP 42-NF 37), United States Pharmacopeial Convention, Rockville (MD) 2017; last access date November 1, 2019Search in Google Scholar

18. A. Dean, D. Voss and D. Draguljic, Design and Analysis of Experiments, 2nd ed., Springer International Publishing, Cham 2017.10.1007/978-3-319-52250-0Search in Google Scholar

19. L. Eriksson, E. Johansson, N. Kettaneh-Wold, C. Wilkström and S. Wold, Design of Experiments – Principles and Applications, 3rd ed., MKS Umetrics AB, Umeå 2008.Search in Google Scholar

20. A. L. Vonica-Gligor, I. Tomuţă I and S.E. Leucuţa, Piecewise function parameters as responses of the design of experiment in the development of a pulsatile release chronopharmaceutical system, Acta Pharm. 66 (2016) 173–189; https://doi.org/10.1515/acph-2016-002510.1515/acph-2016-002527279062Search in Google Scholar

21. A. Ćurić, R. Reul, J. Möschwitzer and G. Fricker, Formulation optimization of itraconazole loaded PEGylated liposomes for parenteral administration by using design of experiments, Int. J. Pharm. 448 (2013) 189–197; https://doi.org/10.1016/j.ijpharm.2013.03.02910.1016/j.ijpharm.2013.03.02923524086Search in Google Scholar

22. C. Saroja and P. K. Lakshmi, Formulation and optimization of fenofibrate lipospheres using Taguchi’s experimental design, Acta Pharm. 63 (2013) 71–83; https://doi.org/10.2478/acpb-2013-000810.2478/acpb-2013-000823482314Search in Google Scholar

23. B. Sylvester, A. Porfire, D. M. Muntean, L. Vlase and I. Tomuţă, Formulation optimization of pravastatin loaded long-circulating liposomes using a design of experiments, Farmacia64 (2016) 449–458.Search in Google Scholar

24. Z. I. Szabó, B. Székely-Szentmiklósi, B. Deák, I. Székely-Szentmiklósi, B. Kovács, K. Zöldi and E. Sipos, Study of the effect of formulation variables on the characteristics of combination tablets containing enalapril maleate and indapamide as active substances using experimental design, Acta Pharm. 66 (2016) 191–206; https://doi.org/10.1515/acph-2016-001910.1515/acph-2016-001927279063Search in Google Scholar

25. L. R. Tefas, B. Sylvester, I. Tomuță, A. Sesarman, E. Licarete, M Banciu and A. Porfire, Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach, Drug Des. Devel. Ther. 11 (2017) 1605–1621; https://doi.org/10.2147/DDDT.S12900810.2147/DDDT.S129008544869728579758Search in Google Scholar

26. B. Kovács, L. K. Kántor, M. D. Croitoru, É. K. Kelemen, M. Obreja, E. E. Nagy, B. Székely-Szentmiklósi and Á. Gyéresi, Reversed phase HPLC for strontium ranelate: Method development and validation applying experimental design, Acta Pharm.68 (2018) 171–183; https://doi.org/10.2478/acph-2018-001910.2478/acph-2018-001929702478Search in Google Scholar

27. P. Shah, T. Pandya, M. Gohel and V. Thakkar, Development and validation of HPLC method for simultaneous estimation of rifampicin and ofloxacin using experimental design, J. Taibah Univ. Sci.13 (2018) 146–154; https://doi.org/10.1080/16583655.2018.154874810.1080/16583655.2018.1548748Search in Google Scholar

28. User guide to MODDE Version 12, Sartorius Stedim Data Analytics, Umeå, Sweden, 2017; https://blog.umetrics.com/hubfs/Download%20Files/MODDE%2012.0.1%20User%20Guide.pdf; last access date November 12, 2019Search in Google Scholar

29. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Dissolution Methods, FDA, Silver Spring (MD), USA, 2012; https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm, last access date November 14, 2019Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo