1. bookVolumen 70 (2020): Edición 4 (December 2020)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Process analytical technology tools for process control of roller compaction in solid pharmaceuticals manufacturing

Publicado en línea: 13 May 2020
Volumen & Edición: Volumen 70 (2020) - Edición 4 (December 2020)
Páginas: 443 - 463
Aceptado: 03 Dec 2019
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. R. W. Miller, Roller Compaction Technology, in Handbook of Pharmaceutical Granulation Technology (Ed. D. M. Parikh), 2nd ed., Taylor & Francis Group, LLC Boca Raton 2005, pp. 159–190.10.1201/9780849354953.ch6Search in Google Scholar

2. P. J. Sheskey and R. W. Miller, Roller Compaction Technology for the Pharmaceutical Industry, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick), 3rd ed., Informa Healthcare USA, Inc., New York 2007, pp. 3159–3176.Search in Google Scholar

3. Y. A. Yusof, A. C. Smith and B. J. Briscoe, Roll compaction of maize powder, Chem. Eng. Sci. 60 (2005) 3919–3931; https://doi.org/10.1016/j.ces.2005.02.02510.1016/j.ces.2005.02.025Search in Google Scholar

4. Y. Teng, Z. Qui and H. Wen, Systematical approach of formulation and process development using roller compaction, Eur. J. Pharm. Biopharm.73 (2009) 219–229; https://doi.org/10.1016/j.ejpb.2009.04.00810.1016/j.ejpb.2009.04.008Search in Google Scholar

5. D. Z. Božič, R. Dreu and F. Vrečer, Influence of dry granulation on compactibility and capping tendency of macrolide antibiotic formulation, Int. J. Pharm. 357 (2008) 44–54; https://doi.org/10.1016/j.ijpharm.2008.01.02310.1016/j.ijpharm.2008.01.023Search in Google Scholar

6. P. D. Daugherity and J. H. Chu, Investigation of serrated roll surface differences on ribbon thickness during roller compaction, Pharm. Dev. Technol.12 (2007) 603–608; https://doi.org/10.1080/1083745070156301210.1080/10837450701563012Search in Google Scholar

7. P. Kleinebudde, Roll compaction/dry granulation: pharmaceutical applications, Eur. J. Pharm. Biopharm.58 (2004) 317–326; https://doi.org/10.1016/j.ejpb.2004.04.01410.1016/j.ejpb.2004.04.014Search in Google Scholar

8. S. Ingelbrecht and J. P. Remon, Roller compaction and tableting of microcrystalline cellulose/drug mixtures, Int. J. Pharm.161 (1998) 215–224; https://doi.org/10.1016/s0378-5173(97)00356-610.1016/S0378-5173(97)00356-6Search in Google Scholar

9. R. T. Dec, A. Zavalingos and J. C. Cunningham, Comparision of various modeling methods for analysis of powder compaction in roller press, Powder Technol.130 (1-3) (2003) 265–271; https://doi.org/10.1016/s0032-5910(02)00203-610.1016/S0032-5910(02)00203-6Search in Google Scholar

10. M. Turkoglu, I. Aydin, M. Murray and A. Sakr, Modeling of a roller compaction process using neural networks and genetic algorithms, Eur. J. Pharm. Biopharm.48 (1999) 239–245; https://doi.org/10.1016/s0939-6411(99)00054-510.1016/S0939-6411(99)00054-5Search in Google Scholar

11. J. R. Johanson, A rolling theory of granular solids, J. Appl. Mech.32 (1965) 842–848; https://doi.org/10.1115/1.362732510.1115/1.3627325Search in Google Scholar

12. J. L. P. Soh, N. Boersen, M. T. Carvajal, K. R. Morris, G. E. Peck and R. Pinal, Importance of raw material attributes for modeling ribbon and granule properties in roller compaction: multivariate analysis on roll gap and NIR spectral slope as process critical control parameters, J. Pharm. Innov.2 (2007) 106–124; https://doi.org/10.1007/s12247-007-9013-z10.1007/s12247-007-9013-zSearch in Google Scholar

13. J. L. P. Soh, F. Wang, N. Boersen, R. Pinal, G. E. Peck and M. T. Carvajal, J. Cheney, H. Valthorsson and J. Pazdan, Utility of multivariate analysis in modeling the effects of raw material properties and operating parameters on granule and ribbon properties prepared in roller compaction, Drug Dev. Ind. Pharm.34 (2008) 1022–1035; https://doi.org/10.1080/0363904080192599010.1080/03639040801925990Search in Google Scholar

14. FDA (Food Drug Administration), Guidance for Industry: PAT – A Framework for Innovative Pharmaceutical Development, Manufacture and Quality Assurance (2004).Search in Google Scholar

15. T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J. P. Remon and C. Vervaet, Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes, Int. J. Pharm.417 (2011) 32–47; https://doi.org/10.1016/j.ijpharm.2010.12.01210.1016/j.ijpharm.2010.12.012Search in Google Scholar

16. J. Lupayaert, D. L. Massart, Y. V. Heyden, Near-infrared spectroscopy applications in pharmaceutical analysis, Talanta72 (2007) 865–883; https://doi.org/10.1016/j.talanta.2006.12.02310.1016/j.talanta.2006.12.023Search in Google Scholar

17. G. Reich, Near infrared spectroscopy and imaging: basic principles and pharmaceutical applications, Adv. Drug Deliv. Rev.57 (2005) 1109–1143; https://doi.org/10.1016/j.addr.2005.01.02010.1016/j.addr.2005.01.020Search in Google Scholar

18. K. Korasa and F. Vrečer, Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms, Eur. J. Pharm. Sci.111 (2018) 278–292; https://doi.org/10.1016/j.ejps.2017.10.01010.1016/j.ejps.2017.10.010Search in Google Scholar

19. K. Korasa and F. Vrečer, A Study on the applicability of multiple process analysers in the production of coated pellets, Int. J. Pharm. (2019) (in press); https://doi.org/10.1016/j.ijpharm.2019.01.06910.1016/j.ijpharm.2019.01.069Search in Google Scholar

20. B. F. MacDonald and K. A. Prebble, Some applications of near-infrared reflectance analysis in the pharmaceutical industry, J. Pharm. Biomed. Anal.11 (1993) 1077–1085; https://doi.org/10.1016/0731-7085(93)80085-f10.1016/0731-7085(93)80085-FSearch in Google Scholar

21. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch and C. de la Pezuela, Near-infrared spectroscopy in the pharmaceutical industry, The Analyst 123 (1998) 135R-150R; https://doi.org/10.1039/a802531b10.1039/a802531b10071381Search in Google Scholar

22. K. Korasa, G. Hudovornik and F.Vrečer, Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets, Eur. J. Pharm. Sci.93 (2016) 484–492; https://doi.org/10.1016/j.ejps.2016.08.03810.1016/j.ejps.2016.08.03827562707Search in Google Scholar

23. T. Rajalahti and O. M. Kvalheim, Multivariate data analysis in pharmaceutics: a tutorial review, Int. J. Pharm. 417 (2011) 280–290; https://doi.org/10.1016/j.ijpharm.2011.02.01910.1016/j.ijpharm.2011.02.019Search in Google Scholar

24. A. Gupta, G. E. Peck, R. W. Miller and K. R. Morris, Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy, J. Pharm. Sci.93 (2004) 1047–1053; https://doi.org/10.1002/jps.2000310.1002/jps.20003Search in Google Scholar

25. J. D. Kirsch and J. K. Drennen, Nondestructive tablet hardness testing by near-infrared spectroscopy: A new and robust spectral best fit algorithm, J. Pharm. Biomed. Anal. 19 (1999) 351–362; https://doi.org/10.1016/s0731-7085(98)00132-010.1016/S0731-7085(98)00132-0Search in Google Scholar

26. M. Donoso, D. O. Kildsig and E. S. Ghaly, Prediction of tablet hardness and porosity using near-infrared diffuse reflectance spectroscopy as a non-destructive method, Pharm. Dev. Technol.8 (2003) 357–366; https://doi.org/10.1081/pdt-12002468910.1081/PDT-12002468914601960Search in Google Scholar

27. S. M. Short, R. P. Cogdill, P. L. D. Wildfong, J. K. Drennen and C. A. Anderson, A near-infrared spectroscopic investigation of relative density and crushing strength in four component compacts, J. Pharm. Sci.98 (2009) 1095–1109; https://doi.org/10.1002/jps.2147310.1002/jps.2147318623193Search in Google Scholar

28. A. Gupta, G. E. Peck, R. W. Miller and K. R. Morris, Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: A comparative study using near-infrared spectroscopy, J. Pharm. Sci. 94 (2005) 2301–2313; https://doi.org/10.1002/jps.2043010.1002/jps.2043016136560Search in Google Scholar

29. G. Hudovornik, K. Korasa and F. Vrečer, A study on the applicability of in-line measurements in the monitoring of the pellet coating process, Eur. J. Pharm. Sci.75 (2015) 160–168; https://doi.org/10.1016/j.ejps.2015.04.00710.1016/j.ejps.2015.04.00725933718Search in Google Scholar

30. A. J. O’Neil, R. D. Jee and A. C. Moffat, Measurement of the cumulative particle size distribution of microcrystalline cellulose using near-infrared reflectance spectroscopy, The Analyst124 (1999) 33–36; https://doi.org/10.1039/a807134i10.1039/a807134i10563043Search in Google Scholar

31. M. C. Pasikatan, J. L. Steele, C. K. Spillman and E. Haque, Near infrared reflectance spectroscopy for online particle size analysis of powder and ground materials, J. Near Infrared Spectrosc.9 (2001) 153–164; https://doi.org/10.1255/jnirs.30310.1255/jnirs.303Search in Google Scholar

32. E. N. Lewis, J. W. Schopplrei, E. Lee and L. H. Kidder, NIR chemical imaging as a process analytical tool, Innovations Pharm. Technol. (2006) 107–111.Search in Google Scholar

33. S. Kukec, G. Hudovornik, R. Dreu and F. Vrečer, Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes, Drug Dev. Ind. Pharm.40 (2013) 952–959; https://doi.org/10.3109/03639045.2013.79183210.3109/03639045.2013.79183223662716Search in Google Scholar

34. M. Khorasani, J. M. Amigo, P. Bertelsen, C. C. Sun and J. Rantanen, Process optimization of dry granulation based tableting line: extracting physical material characteristics from granules, ribbons and tablets using near-IR (NIR) spectroscopic measurement, Powder Technol.300 (2016) 120–125; https://doi.org/10.1016/j.powtec.2016.03.00410.1016/j.powtec.2016.03.004Search in Google Scholar

35. D. Acevedo, A. Muliadi, A. Giridhar, J. D. Litster and R. J. Romañach, Evaluation of three approaches for real-time monitoring of roller compaction with near-infrared spectroscopy, AAPS PharmSciTech13 (2012) 1005–1012; https://doi.org/10.1208/s12249-012-9825-010.1208/s12249-012-9825-0342968722826093Search in Google Scholar

36. M. E. Crowley, A. Hegarty, M. A. P. McAuliffe, G. E. O’Mahony, L. Kiernan, K. Hayes and A. M. Crean, Near-infrared monitoring of roller compacted ribbon density: Investigating sources of variation contributing to noisy spectral data, Eur. J. Pharm. Sci.102 (2017) 103–114; https://doi.org/10.1016/j.ejps.2017.02.02410.1016/j.ejps.2017.02.02428216342Search in Google Scholar

37. M. A. P. McAuliffe, G. E. O’Mahony, C. A. Blackshields, J. A. Collins, D. P. Egan, J. Kiernan, E. O’Neill, S. Lenihan, G. M. Walker and A. M. Crean, The use of PAT and off-line methods for monitoring of roller compacted ribbon and granule properties with a view to continuous processing, Org. Process Res. Dev.19 (2015) 158–166; https://doi.org/10.1021/op500001310.1021/op5000013Search in Google Scholar

38. A. Gupta, G. E. Peck, R. W. Millerand K. R. Morris, Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young’s modulus of roller compacted powder blends, J. Pharm. Sci.94 (2005) 1589–1597; https://doi.org/10.1002/jps.2037510.1002/jps.2037515924348Search in Google Scholar

39. A. K. Samanta, A. D. Karande, K. Y. Ng and P. W. S. Heng, Application of near-infrared spectroscopy in real-time monitoring of product attributes of ribbed roller compacted flakes, AAPS PharmSciTech14 (2013) 83–100; https://doi.org/10.1208/s12249-012-9890-410.1208/s12249-012-9890-4358166823229380Search in Google Scholar

40. P. V. Quyet, A. K. Samanta, C. V. Liew, L. W. Chan and P. W. S. Heng, A prediction model for monitoring ribbed roller compacted ribbons, J. Pharm. Sci.102 (2013) 2667–2678; https://doi.org/10.1002/jps.2363510.1002/jps.2363523744608Search in Google Scholar

41. R. Kona, R. M. Fahmy, G. Claycamp, J. E. Polli, M. Martinez and S. W. Hoag, Quality-by-Design III: Application of near-infrared spectroscopy to monitor roller compaction in-process and product quality attributes of immediate release tablets, AAPS PharmSciTech16 (2015) 202–216; https://doi.org/10.1208/s12249-014-0180-110.1208/s12249-014-0180-1430981325319052Search in Google Scholar

42. T. Feng, F. Wang, R. Pinal, C. Wassgren and M. T. Carvajal, Investigation of the variability of NIR in-line monitoring of roller compaction process by using fast Fourier transform (FFT) analysis, AAPS PharmSciTech9 (2008) 419–424; https://doi.org/10.1208/s12249-008-9054-810.1208/s12249-008-9054-8297692318431668Search in Google Scholar

43. H. Lim, V. S. Dave, L. Kidder, E. N. Lewis, R. Fahmy and S. W. Hoag, Assessment of the critical factors affecting the porosity of roller compacted ribbons and the feasibility of using NIR chemical imaging to evaluate the porosity distribution, Int. J. Pharm.410 (2011) 1–8; https://doi.org/10.1016/j.ijpharm.2011.02.02810.1016/j.ijpharm.2011.02.02821371542Search in Google Scholar

44. J. D. Kirsch and J. K. Drennen, Near-infrared spectroscopy: Applications in the analysis of tablets and solid pharmaceutical dosage, Appl. Spectrosc. Rev.30 (1995) 139–174; https://doi.org/10.1080/0570492950800090610.1080/05704929508000906Search in Google Scholar

45. J. M. Amigo, Practical issues of hyperspectral imaging analysis of solid dosage forms, Anal. Bioanal. Chem.398 (2010) 93–109; https://doi.org/10.1007/s00216-010-3828-z10.1007/s00216-010-3828-zSearch in Google Scholar

46. F. C. Clarke, S. V. Hammond, R. D. Jee and A. C. Moffat, Determination of the information depth and sample size for the analysis of pharmaceutical materials using reflectance near-infrared microscopy, Appl. Spectrosc.56 (2002) 1475–1483; https://doi.org/10.1366/0003702026037779710.1366/00037020260377797Search in Google Scholar

47. P. Prajapati, R. Solanki, V. Modi and T. Basuri, A brief review on NIR spectroscopy and its pharmaceutical applications, Int. J. Pharm. Chem. Anal.3 (2016) 117–123; https://doi.org/10.5958/2394-2797.2016.00018.610.5958/2394-2797.2016.00018.6Search in Google Scholar

48. H. Dalvi, C. Fauteux-Lefebvre, J. M. Guay, N. Abatzoglou and R. Gosselin, Concentration monitoring with near infrared chemical imaging in a tableting press, J. Spectral Imaging7 (2018) 1–18; https://doi.org/10.1255/jsi.2018.a510.1255/jsi.2018.a5Search in Google Scholar

49. N. Souihi, D. Nilsson, M. Josefson and J. Trygg, Near-infrared chemical imaging (NIR-CI) on roll compacted ribbons and tablets – multivariate mapping of physical and chemical properties, Int. J. Pharm.483 (2015) 200–211; https://doi.org/10.1016/j.ijpharm.2015.02.00610.1016/j.ijpharm.2015.02.006Search in Google Scholar

50. P. Guigon and O. Simon, Roll press design – influence of force feed system on compaction, Powder Technol.130 (2003) 41–48; https://doi.org/10.1016/s0032-5910(02)00223-110.1016/S0032-5910(02)00223-1Search in Google Scholar

51. M. Khorasani, J. M. Amigo, J. Sonnergaard, P. Olsen, P. Bertelsen and J. Rantanen, Visualization and prediction of porosity in roller compacted ribbons with near-infrared chemical imaging (NIR-CI), J. Pharm. Biomed. Anal.109 (2015) 11–17; https://doi.org/10.1016/j.jpba.2015.02.00810.1016/j.jpba.2015.02.00825746502Search in Google Scholar

52. M. Khorasani, J. M. Amigo, C. C. Sun, P. Bertelsen and J. Rantanen, Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production-line of roll compaction and tableting, Eur. J. Pharm. Biopharm.93 (2015) 293–302; https://doi.org/10.1016/j.ejpb.2015.04.00810.1016/j.ejpb.2015.04.00825917640Search in Google Scholar

53. N. Souihi, M. Josefson, P. Tajarobi, B. Gururajan and Johan Trygg, Design space estimation of the roller compaction process, Ind. Eng. Chem. Res.52 (2013) 12408–12419; https://doi.org/10.1021/ie303580y10.1021/ie303580ySearch in Google Scholar

54. A. Gupta, J. Austin, S. Davis, M. Harris and G. Reklaitis, A novel microwave sensor for real-time online monitoring of roll compacts of pharmaceutical powders online – a comparative case study with NIR, J. Pharm. Sci.104 (2015) 1787–1794; https://doi.org/10.1002/jps.2440910.1002/jps.2440925754185Search in Google Scholar

55. R. Knöchel, W. Taute and C. Döscher, Stray field ring resonators and a novel trough guide resonator for precise microwave moisture and density measurements, Meas. Sci. Technol.18 (2007) 1061–1068; https://doi.org/10.1088/0957-0233/18/4/01410.1088/0957-0233/18/4/014Search in Google Scholar

56. S. Trabelsi, A. W. Kraszewski and S. O. Nelson, A microwave method for on-line determination of bulk density and moisture content of particulate materials, IEEE Trans. Instrum. Meas.47 (1998) 127–132; https://doi.org/10.1109/19.72880410.1109/19.728804Search in Google Scholar

57. C. C. Corredor, D. Bu and D. Both, Comparison of near infrared and microwave resonance sensors for at-line moisture determination in powders and tablets, Anal. Chim. Acta696 (2011) 84–93; https://doi.org/10.1016/j.aca.2011.03.04810.1016/j.aca.2011.03.04821621036Search in Google Scholar

58. C. Buschmüller, W. Wiedey, C. Döscher, J. Dressler and J. Breitkreutz, In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology, Eur. J. Pharm. Biopharm.69 (2008) 380–387; https://doi.org/10.1016/j.ejpb.2007.09.01410.1016/j.ejpb.2007.09.01417976965Search in Google Scholar

59. V. Lourenço, T. Herdling, G. Reich, J. C. Menezes and D. Lochmann, Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation, Eur. J. Pharm. Biopharm.78 (2011) 513–521; https://doi.org/10.1016/j.ejpb.2011.02.00810.1016/j.ejpb.2011.02.00821333737Search in Google Scholar

60. J. Austin, A. Gupta, R. McDonnell, G. V. Reklaitis and M. T. Harris, The use of near-infrared and microwave resonance sensing to monitor a continuous roller compaction process, J. Pharm. Sci.102 (2013) 1895–1904; https://doi.org/10.1002/jps.2353610.1002/jps.2353623568242Search in Google Scholar

61. R. Keintz, G. Fariss and P. Okoye, Thermal effusivity and power consumption as PAT tools for monitoring granulation end point, Pharm. Technol.30 (2006) 60–72.Search in Google Scholar

62. Y. Roy, N. Mathis, S. Closs, J. Boodram, M. Hervas, Sundarajan, T. Marason and W. Meyer, Online thermal effusivity monitoring: a promising technique for determining when to conclude blending of magnesium stearate, Tablets & Capsules3 (2005) 38–47.Search in Google Scholar

63. M. K. Ghorab, R. Chatlapalli, S. Hasan and A. Nagi, Application of thermal effusivity as a process analytical technology tool for monitoring and control of the roller compaction process, AAPS PharmSciTech8 (2007) E155-E161; https://doi.org/10.1208/pt080102310.1208/pt0801023275043417408222Search in Google Scholar

64. A. F. Silva, A. Burgggraeve, Q. Denon, P. Van der Meeren, N. Sandler, T. Van Den Kerkhof, M. Hellings, C. Vervaet, J. P. Temon, J. A. Lopes and T. De Beer, Particle sizing measurements in pharmaceutical applications: comparison of in-process methods versus off-line methods, Eur. J. Pharm. Biopharm.85 (2013) 1006–1018; https://doi.org/10.1016/j.ejpb.2013.03.03210.1016/j.ejpb.2013.03.03223583493Search in Google Scholar

65. W. Yu and B. C. Hancock, Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles, Int. J. Pharm.361 (2008) 150–157; https://doi.org/10.1016/j.ijpharm.2008.05.02510.1016/j.ijpharm.2008.05.02518573322Search in Google Scholar

66. V. R. Nalluri, P. Schirg, X. Gao, A. Virdis, G. Imanidis and M. Kuentz, Different modes of dynamic image analysis in monitoring of pharmaceutical dry milling process, Int. J. Pharm.391 (2010) 107–114; https://doi.org/10.1016/j.ijpharm.2010.02.02710.1016/j.ijpharm.2010.02.027Search in Google Scholar

67. R. Xu and O. A. Di Guida, Comparison of sizing small particles using different technologies, Powder Technol.132 (2003) 145–153; https://doi.org/10.1016/s0032-5910(03)00048-210.1016/S0032-5910(03)00048-2Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo