Acceso abierto

Application of a Knowledge-in-Pieces perspective to students’ explanations of water springs: A complex phenomenon pertaining to the field of physical geography


Cite

Ashe, D. & Bibi, S. (2011). Unpacking TPACK and students’ approaches to learning: Applying knowledge in pieces to Higher Education teaching and learning. In G. Williams, P. Statham, N. Brown & B. Cleland (Eds.) Changing Demands, Changing Directions. Proceedings Ascilite 2011 Hobart (pp.128-132). http://www.ascilite.org/conferences/hobart11/downloads/papers/Ashe-concise.pdf, last visited October 9, 2019. Search in Google Scholar

Barth-Cohen, L., & Braden, S. K. (2018). A continuum of knowledge structures in an observation-based field geology setting. Proceedings of International Conference of the Learning Sciences, 3, 1599-1600. Search in Google Scholar

Bengtson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlusOpen, 2, 8–14, doi.org/10.1016/j.npls.2016.01.00110.1016/j.npls.2016.01.001 Search in Google Scholar

Brown, D. E. (1989). Students’ concept of force: The importance of understanding Newton’s third law. Physics Education, 24(6), 353-358.10.1088/0031-9120/24/6/007 Search in Google Scholar

Chao, J., Feldon, D. F. & Cohoon, J. P. (2017). Dynamic mental model construction: A knowledge in pieces-based explanation for computing students’ erratic performance on recursion. Journal of the Learning Science, 27(3), 431-473. doi.org/10.1080/10508406.2017.139230910.1080/10508406.2017.1392309 Search in Google Scholar

Cheek, K. A. (2010). Commentary: A summary and analysis of twenty-seven years of geoscience conceptions research. Journal of Geoscience Education, 58(3), 122-134. doi.org/10.5408/1.354429410.5408/1.3544294 Search in Google Scholar

Clement, J. J. (1984). Basic problem solving skills as prerequisites for advanced problem solving skills in mathematics and science. In J. M. Moser (Eds.), Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 253–433). Madison, WI: North American Chapter. Search in Google Scholar

Conrad, D. (2015). Schülervorstellungen zur Plattentektonik – Ergebnisse einer qualitativen Interviewstudie mit Schülern der neunten Jahrgangsstufe. Zeitschrift für Geographiedidaktik, 43(3), 175-204. Search in Google Scholar

Daehler, K. R., Shinohara, M., & Folsom, J. (2011). Making sense of science: Force & motion for teachers of grades 6-8. San Francisco: WestEd. Search in Google Scholar

D-EDK, Deutschschweizer Erziehungsdirektoren-Konferenz (2015). Lehrplan 21. Luzern. http://www.lehrplan21.ch, last visited October 9, 2019. Search in Google Scholar

DGfG, Deutsche Gesellschaft für Geographie (2014). Educational Standards in Geography for the Intermediate School Certificate with sample assignments. http://www.geographie.de, last visited October 9, 2019. (updated 3rd edition) Search in Google Scholar

diSessa, A., Sherin, B. & Levin, M. (2016). Knowledge analysis: An introduction. In A. diSessa, M. Levin & N. J. S. Brown (eds.), Knowledge and Interaction (pp. 30-71). New York: Routledge. doi.org/10.4324/9781315757360 Search in Google Scholar

diSessa, A. A. (2018). A friendly introduction to “Knowledge in Pieces”: Modeling types of knowledge and their roles in learning. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education, ICME-13 Monographs (pp. 66-84). Cham: Springer Open. doi.org/10.1007/978-3-319-72170-5_510.1007/978-3-319-72170-5_5 Search in Google Scholar

diSessa, A. A. (2008). A bird’s-eye view of the “Pieces” vs. “Coherence” controversy (from the “Pieces” side of the fence). In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 35-60). New York: Routledge. Search in Google Scholar

diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 165-255. https://doi.org/10.1080/07370008.1985.9649008 Search in Google Scholar

Felzmann, D. (2013). Didaktische Rekonstruktion des Themas “Gletscher und Eiszeiten” für den Geographieunterricht. Beiträge zur Didaktischen Rekonstruktion, Bd. 41. Oldenburg: Didaktisches Zentrum Universität Oldenburg. Search in Google Scholar

Flick, U. (2009). An introduction to qualitative research. London: Sage. Search in Google Scholar

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York: de Gruyter. doi.org/10.4324/9780203793206 Search in Google Scholar

Glawion, R., Glaser, R. & Sauer, H. (2009). Physische Geographie. Braunschweig: Westermann. Search in Google Scholar

Goodyear, P., Markauskaite, L., & Kali, Y. (2009). Learning design, design contexts and pedagogical knowledge-in-pieces. In The future of learning design conference proceedings (pp. 13-19). Australia, Wollongong: University of Wollongong. http://ro.uow.edu.au/fld, last visited October 9, 2019. Search in Google Scholar

Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers. Search in Google Scholar

Hammer, D. (2004). The variability of student reasoning, lectures 1-3. In E. F. Redish & M. Vicentini (Eds.), Research on Physics Education. Proceedings of the International School of Physics „Enrico Fermi“, Course CLVI, Vol. 156 (pp. 279-340). Bologna: Società Italiana di Fisica. Search in Google Scholar

Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, Physics Education Research Supplement, 68(7), 52-59.10.1119/1.19520 Search in Google Scholar

Hammer, D. (1996). Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and intentions? The Journal of the Learning Sciences, 5(2), 97-127.10.1207/s15327809jls0502_1 Search in Google Scholar

Harlow D. B., Bianchini J. A., Swanson L. H. & Dwyer H. A. (2013). Potential teachers’ appropriate and inappropriate application of pedagogical resources in a model-based physics course: A “knowledge in pieces” perspective on teacher learning. Journal of Research in Science Teaching, 50(9), 1098–1126. doi.org/10.1002/tea.2110810.1002/tea.21108 Search in Google Scholar

Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Dordrecht: Kluwer Academic. Search in Google Scholar

Haszeldine, R. S. (2009). Carbon capture and storage: How green can black be? Science 325, 1647-1652, doi.org/10.1126/science.1172246 Search in Google Scholar

Hölting, B. & Coldewey, W. G. (2009). Hydrogeologie – Einführung in die Allgemeine und Angewandte Hydrogeologie. München: Elsevier. Search in Google Scholar

IGRAC International Groundwater Resource Assessment Centre (2018). Groundwater Overview: Making the invisible visible. https://www.un-igrac.org/sites/default/files/re-sources/files/Groundwater%20overview%20-%20Making%20the%20invisible%20visible_Print.pdf, last visited October 9, 2019. Search in Google Scholar

Iszak, A. (2005). “You have to count the squares”: Applying knowledge in pieces to learning rectangular area. Journal of the Learning Sciences, 14(3), 361–403, doi.org/10.1207/s15327809jls1403_2 Search in Google Scholar

Kapon, S. (2016). Unpacking sense making. Science education, 101(1), 165-198. doi.org/10.1002/sce.2124810.1002/sce.21248 Search in Google Scholar

Kapon, S. & diSessa, A. A. (2012). Reasoning through instructional analogies. Cognition and Instruction, 30, 261–310. doi.org/10.1080/07370008.2012.68938510.1080/07370008.2012.689385 Search in Google Scholar

Kleemann, F., Krähnke, U. & Matuschek, I. (2009). Interpretative Sozialforschung: Eine praxisori-entierte Einführung. Wiesbaden: VS Search in Google Scholar

Lane, R. & Coutts, P. (2012). Student’s alternative conceptions of tropical cyclone causes and processes. International Research in Geographical and Environmental Education, 21(3), 205-222. doi.org/10.1080/10382046.2012.69808010.1080/10382046.2012.698080 Search in Google Scholar

Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. doi.org/10.1207/s15326985ep3901_610.1207/s15326985ep3901_6 Search in Google Scholar

Masson, S. & Legendre, M.-F. (2008). Effects of using historical microworlds on conceptual change: A p-prim analysis. International Journal of Environmental & Science Education, 3(3), 115-130. Search in Google Scholar

McCloskey, M. (1983). Intuitive physics, Scientific American, 248, 122-130.10.1038/scientificamerican0483-122 Search in Google Scholar

Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849–877. doi.org/10.1002/sce.2102610.1002/sce.21026 Search in Google Scholar

Ohst, A., Fondu, B. Glogger, I., Nückles, M., & Renkl (2014). Preparing learners with partly incorrect intuitive prior knowledge for learning. Frontiers in Psychology, 5(664). doi.org/10.3389/fpsyg.2014.0066410.3389/fpsyg.2014.00664 Search in Google Scholar

Orrill C. H., Eriksen Brown R. (2012). Making sense of double number lines in professional development: Exploring teachers’ understandings of proportional relationships. Journal of Mathematics Teacher Education 15(5), 381–403 doi.org/10.1007/s10857-012-9218-z10.1007/s10857-012-9218-z Search in Google Scholar

Owen, C., Pirie, D., & Draper, G. (2011). Earth Lab: Exploring the Earth Sciences. Australia: Cengage learning. Search in Google Scholar

Parnafes, O. (2012). Developing explanations and developing understanding: Students explain the phases of the moon using visual representations. Cognition and Instruction, 30(4), 359-403, doi.org/10.1080/07370008.2012.71688510.1080/07370008.2012.716885 Search in Google Scholar

Patton, M. Q. (2002). Qualitative research & evaluation methods. Thousand Oaks, California: Sage. Search in Google Scholar

Philip, T. (2011), An “Ideology in Pieces” Approach to Studying Change in Teachers’ Sensemaking About Race, Racism, and Racial Justice, Cognition and Instruction, 29(3), 297-329. doi.org/10.1080/07370008.2011.583369 Search in Google Scholar

Redish, E. F. (2004). A theoretical framework for physics education research: Modeling student thinking. In E. F. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 1-63). Bologna: Italian Physical Society. Search in Google Scholar

Reinders, H. (2005). Qualitative Interviews mit Jugendlichen führen. Ein Leitfaden. München: Oldenbourg. Search in Google Scholar

Reinfried, S. (2015). Der Einfluss kognitiver und motivationaler Faktoren auf die Konstruktion hydrologischen Wissens – eine Analyse individueller Lernpfade. Zeitschrift für Geographiedidaktik, 43(2), 107-138. Search in Google Scholar

Reinfried, S., Aeschbacher, U. Kienzler, P. & Tempelmann, S. (2013). Mit einer didaktisch rekonstruierten Lernumgebung Lernerfolge erzielen – das Beispiel Wasserquellen und Gebirgshydrologie. Zeitschrift für Didaktik der Naturwissenschaften, 19, 261-288. Search in Google Scholar

Reinfried, S., Aeschbacher, U., & Rottermann, B. (2012a). Improving students’ conceptual understanding of the greenhouse effect using theory-based learning materials that promote deep learning. International Research in Geographical and Environmental Education, 21(2), 155-178. doi.org/10.1080/10382046.2012.67268510.1080/10382046.2012.672685 Search in Google Scholar

Reinfried, S., Tempelmann, S., & Aeschbacher, U. (2012b). Addressing secondary school students’ everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction. Hydrology and Earth System Science, 16(5), 1365-1377. http://www.hydrol-earth-syst-sci.net/16/1365/2012/hess-16-1365-2012.html10.5194/hess-16-1365-2012 Search in Google Scholar

Rosenberg, S. A., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. Journal of the Learning Sciences, 15(2), 261-292. doi.org/10.1207/s15327809jls1502_410.1207/s15327809jls1502_4 Search in Google Scholar

Shelton, B. E. & Stevens, R. R. (2004). Using coordination classes to interpret conceptual change in astronomical thinking. In Y. B. Kafai, W. A. Sandoval, N. Enyedy, A. Scott Nixon & F. Herrera (Eds.), Proceedings of the 6th international conference for the learning sciences (8 pages). Mahwah, NJ: Lawrence Erlbaum. Search in Google Scholar

Sherin, B. L., Krakowski, M. & Lee, V. R. (2012). Some assembly required: How scientific explanations are constructed during clinical interviews. Journal of Research in Science Teaching, 49(2), 166-198. doi.org/10.1002/tea.2045510.1002/tea.20455 Search in Google Scholar

Sherin, B. L. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43(6), 535 – 555. doi.org/10.1002/tea.2013610.1002/tea.20136 Search in Google Scholar

Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479-541. doi.org/10.1207/s1532690xci1904_310.1207/S1532690XCI1904_3 Search in Google Scholar

Southerland, S. A., Abrams, E., Cummins, C. L., & Anzelmo, J. (2001). Understanding students’ explanations of biological phenomena: Conceptual frameworks or p-prims? Science Education, 85(4), 328-348. doi.org/10.1002/sce.1013 Search in Google Scholar

Spelke, E. S. (1991). Physical knowledge in infancy: Reflections on Piaget’s theory. In S. Carey & R. Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 133–169). Hillsdale, NJ: Lawrence Erlbaum. Search in Google Scholar

Stamann, S., Janssen, M., & Schreier, M. (2013). Qualitative Inhaltsanalyse – Versuch einer Begriffsbestimmung und Systematisierung. Forum Qualitative Sozialforschung, 17(3). http://www.qualitative-research.net/index.php/fqs/article/view/2581/4022 Search in Google Scholar

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage. Search in Google Scholar

Taber, K. S., & García Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. Journal of the Learning Sciences, 19(1), 99-142. doi.org/10.1080/1050840090345286810.1080/10508400903452868 Search in Google Scholar

Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education: Research and Practice in Europe, 2, 123–158. https://doi.org/10.1039/B1RP90014E Search in Google Scholar

Tarbuck, E. J. & Lutgens, F. K. (2009). Earth Science. Upper Saddle River (NJ): Pearson Prentice Hall. Search in Google Scholar

Ueno, N. (1993). Reconsidering p-prims theory from the viewpoint of situated cognition. Cognition and Instruction, 10(2-3), 239–248. doi.org/10.1080/07370008.1985.964901010.1080/07370008.1985.9649010 Search in Google Scholar

Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change, (pp. 11-30). New York: Routledge. Search in Google Scholar

Wagner, J. F. (2006). Transfer in pieces. Cognition and Instruction, 24(1), 1–71. doi.org/10.1080/10508406.2010.50513810.1207/s1532690xci2401_1 Search in Google Scholar

Watts, D. M., & Zylbersztajn, A. (1981). A survey of some children’s ideas about force, Physics Education, 16(6), 360-365.10.1088/0031-9120/16/6/313 Search in Google Scholar

eISSN:
2616-7697
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Social Sciences, Education, Curriculum and Pedagogy, other