Uneingeschränkter Zugang

Investigation and Prediction of ECMM characteristics of Hardened Die Steel with Nanoparticle Added Electrolytes Using Hybrid Deep Neural Network


Zitieren

1. Prakash, C., Kansal, H.K., Pabla, B.S. & Puri, S. (2017). Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Materials and Manufacturing Processes, 32(3), 274–285. DOI: 10.1080/10426914.2016.1198018.10.1080/10426914.2016.1198018 Search in Google Scholar

2. Sathish, T. (2019). Experimental investigation of machined hole and optimization of machining parameters using electro-chemical machining. J. Mater. Res. Technol., 8(5), 4354–4363. DOI: 10.1016/j.jmrt.2019.07.046.10.1016/j.jmrt.2019.07.046 Search in Google Scholar

3. He, H.D., Qu, N.S., Zeng, Y.B. & Yao, Y.Y. (2017). Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures. The International J. Adv. Manufact. Technol., 89(9), 3177–3186. DOI: 10.1007/s00170-016-9262-4.10.1007/s00170-016-9262-4 Search in Google Scholar

4. Sekar, T. & Marappan, R. (2008). Experimental investigations into the influencing parameters of electrochemical machining of AISI 202. J. Adv. Manufact. Systems, 7(02), 337–343. DOI: 10.1142/S0219686708001486.10.1142/S0219686708001486 Search in Google Scholar

5. Meng, L., Zeng, Y. & Zhu, D. (2017). Investigation on wire electrochemical micro machining of Ni-based metallic glass. Electrochimica Acta, 233, 274–283. DOI: 10.1016/j. electacta.2017.03.045.10.1016/j.electacta.2017.03.045 Search in Google Scholar

6. Dong, S., Wang, Z. & Wang, Y. (2017). High-speed electrochemical discharge drilling (HSECDD) for micro-holes on C17200 beryllium copper alloy in deionized water. The International J. Adv. Manufact. Technol. 88(1), 827–835. DOI: 10.1007/s00170-016-8645-x.10.1007/s00170-016-8645-x Search in Google Scholar

7. Soundarrajan, M. & Thanigaivelan, R. (2019). Investigation of electrochemical micromachining process using ultrasonic heated electrolyte. Adv. Micro and Nano Manufact. Surf. Engin., Springer, Singapore, 423–434. DOI: 10.1007/978-981-32-9425-7_38.10.1007/978-981-32-9425-7_38 Search in Google Scholar

8. Rathod, V., Doloi, B. & Bhattacharyya, B. (2017). Fabrication of microgrooves with varied cross-sections by electro-chemical micromachining. Internat. J. Adv. Manufact. Technol., 92(1), 505–518. DOI: 10.1007/s00170-017-0167-7.10.1007/s00170-017-0167-7 Search in Google Scholar

9. Anasane, S.S. & Bhattacharyya, B. (2016). Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium. Internat. J. Adv. Manufact. Technol., 86(5), 2147–2160. DOI: 10.1007/s00170-015-8309-2.10.1007/s00170-015-8309-2 Search in Google Scholar

10. Thanigaivelan, R., Arunachalam, R.M., Kumar, M. & Dheeraj, B.P. (2018). Performance of electrochemical micromachining of copper through infrared heated electrolyte. Mater. Manufact. Proces., 33(4), 383–389. DOI: 10.1080/10426914.2017.1279304.10.1080/10426914.2017.1279304 Search in Google Scholar

11. Liu, W., Zhang, H., Luo, Z., Zhao, C., Ao, S., Gao, F. & Sun, Y. (2018). Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte. J. Mater. Proces. Technol., 255, 784–794. DOI: 10.1016/j. jmatprotec.2018.01.009.10.1016/j.jmatprotec.2018.01.009 Search in Google Scholar

12. Geethapriyan, T., Samson, R.M., Thavamani, J., Arun Raj, A.C. & Pulagam, B.R. (2019). Experimental investigation of electrochemical micro-machining process parameters on stainless steel 316 using sodium chloride electrolyte. Adv. Manufact. Proces. Springer, Singapore, 471-480. DOI: 10.1007/978-981-13-1724-8_45.10.1007/978-981-13-1724-8_45 Search in Google Scholar

13. Bhuyan, B.K. & Yadava, V. (2013). Experimental modeling and multi-objective optimization of traveling wire electro-chemical spark machining (TW-ECSM) process. J. Mech. Sci. Technol., 27(8), 2467–2476. DOI: 10.1007/s12206-013-0632-7.10.1007/s12206-013-0632-7 Search in Google Scholar

14. Sethi, A., Acharya, B.R. & Saha, P. (2022). Electrochemical dissolution of WC-Co micro-tool in micro-WECM using an Eco-friendly citric acid mixed NaNO3 electrolyte. J. The Electrochem. Soc., 169(3), 033503. DOI: 10.1149/1945-7111/ac54d9.10.1149/1945-7111/ac54d9 Search in Google Scholar

15. Yu, N., Fang, X., Meng, L., Zeng, Y. & Zhu, D. (2018). Electrochemical micromachining of titanium microstructures in an NaCl–ethylene glycol electrolyte. J. Appl. Electrochem., 48(3), 263–273. DOI: 10.1007/s10800-018-1145-y.10.1007/s10800-018-1145-y Search in Google Scholar

16. Tak, M., Reddy S.V., Mishra, A. & Mote, R.G. (2018). Investigation of pulsed electrochemical micro-drilling on titanium alloy in the presence of complexing agent in electrolyte. J. Micromanufac., 1(2), 142–153. DOI: 10.1177/2516598418784682.10.1177/2516598418784682 Search in Google Scholar

17. Ma, N., Phattharasupakun, N., Wutthiprom, J., Tanggarnjanavalukul, C., Wuanprakhon, P., Kidkhunthod, P. & Sawangphruk, M. (2018). High-performance hybrid supercapacitor of mixed-valence manganese oxide/n-doped graphene aerogel nanoflower using an ionic liquid with a redox additive as the electrolyte: In situ electrochemical x-ray absorption spectroscopy. Electrochimica Acta, 271, 110–119. DOI: org/10.1016/j. electacta.2018.03.116.10.1016/j.electacta.2018.03.116 Search in Google Scholar

18. Singh, P.K., Das, A.K., Hatui, G. & Nayak, G.C. (2017). Shape controlled green synthesis of CuO nanoparticles through ultrasonic assisted electrochemical discharge process and its application for supercapacitor. Mater. Chem. Phys., 198, 16–34. DOI: 10.1016/j.matchemphys.2017.04.070.10.1016/j.matchemphys.2017.04.070 Search in Google Scholar

19. Sekar, T., Arularasu, M. & Sathiyamoorthy, V. (2016). Investigations on the effects of Nano-fluid in ECM of die steel. Measurement, 83, 38–43. DOI: 10.1016/j.measurement.2016.01.035.10.1016/j.measurement.2016.01.035 Search in Google Scholar

20. Jiang, K., Wu, X., Lei, J., Wu, Z., Wu, W., Li, W. & Diao, D. (2018). Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte. Internat. J. Adv. Manufac. Technol., 97(9), 3565–3574. DOI: 10.1007/s00170-018-2190-8.10.1007/s00170-018-2190-8 Search in Google Scholar

21. Geethapriyan, T., Muthuramalingam, T., Vasanth, S., Thavamani, J. & Srinivasan, V.H. (2019). Influence of nanoparticles-suspended electrolyte on machinability of stainless steel 430 using electrochemical micro-machining process. Adv. Manufac. Proces. Sprin., Singap. 433–440. DOI: 10.1007/978-981-13-1724-8_42.10.1007/978-981-13-1724-8_42 Search in Google Scholar

22. Kumaar, J.R.V., Thanigaivelan, R. & Soundarrajan, M. (2022). A performance study of electrochemical micro-machining on SS 316L using suspended copper metal powder along with stirring effect. Mater. Manufac. Proces., 1–14. DOI: 10.1080/10426914.2022.2030874.10.1080/10426914.2022.2030874 Search in Google Scholar

23. Yang, Y., Natsu, W. & Zhao, W. (2011). Realization of eco-friendly electrochemical micromachining using mineral water as an electrolyte. Precision Engin., 35(2), 204–213. DOI: 10.1016/j.precisioneng.2010.09.009.10.1016/j.precisioneng.2010.09.009 Search in Google Scholar

24. Geethapriyan, T., Kalaichelvan, K. & Muthuramalingam, T. (2016). Multi performance optimization of electrochemical micro-machining process surface related parameters on machining Inconel 718 using Taguchi-grey relational analysis. La Metallurgia Italiana, 2016(4), 13–19. Search in Google Scholar

25. Fard, A.F. & Hajiaghaei-Keshteli, M. (2016). Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating. Internat. Confer. Ind. Engin., IEEE 12, 331–342. Search in Google Scholar

26. Pradeep, N., Sundaram, K.S. & Kumar, M.P. (2020). Performance investigation of variant polymer graphite electrodes used in electrochemical micromachining of ASTM A240 grade 304. Mater. Manufact. Proces., 35(1), 72–85. DOI: 10.1080/10426914.2019.1697445.10.1080/10426914.2019.1697445 Search in Google Scholar

27. Krishnan, N., Deepak, J. & Hariharan, P. (2020). Multi-response optimization of electrochemical micromachining on masked SS304. Engin. Res. Express, 2(1), 015041. DOI: 10.1088/2631-8695/ab5eb9.10.1088/2631-8695/ab5eb9 Search in Google Scholar

28. Panigrahi, D., Rout, S., Patel, S.K. and Dhupal, D. (2021). Stray current and its consequences on microstructure of Hastelloy C-276 during parametric investigation on geometrical features: fabricated by electrochemical micromachining. Inter-nat. J. Adv. Manufact. Technol., 112(1), 133–156. DOI:10.1007/s00170-020-06365-9.10.1007/s00170-020-06365-9 Search in Google Scholar

29. Prakash, J. & Gopalakannan, S. (2021). Teaching— learning-based optimization coupled with response surface methodology for micro electrochemical machining of aluminium nanocomposite. Silicon, 13(2), 409–432. DOI: 10.1007/s12633-020-00434-0.10.1007/s12633-020-00434-0 Search in Google Scholar

30. Ranganayakulu, J., Srihari, P.V. & Rao, K.V. (2021). An optimization strategy to improve performance in electrochemical discharge machining of borosilicate glass using graph theory algorithm and desirability index. Silicon, 1–14. DOI: 10.1007/s12633-021-01317-8.10.1007/s12633-021-01317-8 Search in Google Scholar

31. Gautam, N., Goyal, A., Sharma, S.S., Oza, A.D. & Kumar, R., 2022. Study of various optimization techniques for electric discharge machining and electrochemical machining processes. Materials Today: Proceedings, 57, 615–621. DOI: 10.1016/j.matpr.2022.02.005.10.1016/j.matpr.2022.02.005 Search in Google Scholar

32. Aslan, N.E.V.Z.A.T. & Cebeci, Y.A.K.U.P. (2007). Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 86(1–2), 90–97. DOI: 10.1016/j.fuel.2006.06.010.10.1016/j.fuel.2006.06.010 Search in Google Scholar

33. Barabadi, H., Honary, S., Ebrahimi, P., Alizadeh, A., Naghibi, F. & Saravanan, M. (2019). Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorganic and Nano-Metal Chemistry, 49(2), 33–43. DOI: 10.1080/24701556.2019.1583251.10.1080/24701556.2019.1583251 Search in Google Scholar

34. Kim, S.G., Harwani, M., Grama, A. & Chaterji, S. (2016). EP-DNN: a deep neural network-based global enhancer prediction algorithm. Scientific reports, 6(1), 1–13. DOI: 10.1038/srep38433.10.1038/srep38433514406227929098 Search in Google Scholar

35. Brammya, G., Praveena, S., Ninu Preetha, N.S., Ramya, R., Rajakumar, B.R. & Binu, D. (2019). Deer hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm. Comp. J. DOI: 10.1093/comjnl/bxy133.10.1093/comjnl/bxy133 Search in Google Scholar

36. Elhami, S. & Razfar, M.R. (2020). Application of nano electrolyte in the electrochemical discharge machining process. Precision Engin., 64, 34–44. DOI: 10.1016/j.precisioneng.2020.03.010.10.1016/j.precisioneng.2020.03.010 Search in Google Scholar

37. Teimouri, R. & Sohrabpoor, H. (2013). Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process. Front. Mech. Engin., 8(4), 429–442. DOI: 10.1007/s11465-013-0277-3.10.1007/s11465-013-0277-3 Search in Google Scholar

38. Charak, A. & Jawalkar, C.S. (2020). Experimental studies in micro channelling on borosilicate glass using RSM optimization technique. Silicon, 12(7), 1707–1721. DOI: 10.1007/s12633-019-00269-4.10.1007/s12633-019-00269-4 Search in Google Scholar

39. Rajput, V., Goud, M. & Suri, N.M. (2021). Performance analysis of closed-loop electrochemical discharge machining (CLECDM) during micro-drilling and response surface methodology based multi-response parametric optimization. Adv. Mater. Process. Technol.1–31. DOI: 10.1080/2374068X.2020.1860494.10.1080/2374068X.2020.1860494 Search in Google Scholar

40. Gopinath, C., Lakshmanan, P. & Amith, S.C. (2021). Production of Micro-holes on Duplex Stainless Steel 2205 by Electrochemical Micromachining: A Grey-RSM Approach. Arabian J. Sci. Engin., 46(3), 2769–2782. DOI: 10.1007/s13369-020-05277-w.10.1007/s13369-020-05277-w Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik