Accesso libero

Investigation and Prediction of ECMM characteristics of Hardened Die Steel with Nanoparticle Added Electrolytes Using Hybrid Deep Neural Network

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Prakash, C., Kansal, H.K., Pabla, B.S. & Puri, S. (2017). Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Materials and Manufacturing Processes, 32(3), 274–285. DOI: 10.1080/10426914.2016.1198018.10.1080/10426914.2016.1198018 Search in Google Scholar

2. Sathish, T. (2019). Experimental investigation of machined hole and optimization of machining parameters using electro-chemical machining. J. Mater. Res. Technol., 8(5), 4354–4363. DOI: 10.1016/j.jmrt.2019.07.046.10.1016/j.jmrt.2019.07.046 Search in Google Scholar

3. He, H.D., Qu, N.S., Zeng, Y.B. & Yao, Y.Y. (2017). Enhancement of mass transport in wire electrochemical micro-machining by using a micro-wire with surface microstructures. The International J. Adv. Manufact. Technol., 89(9), 3177–3186. DOI: 10.1007/s00170-016-9262-4.10.1007/s00170-016-9262-4 Search in Google Scholar

4. Sekar, T. & Marappan, R. (2008). Experimental investigations into the influencing parameters of electrochemical machining of AISI 202. J. Adv. Manufact. Systems, 7(02), 337–343. DOI: 10.1142/S0219686708001486.10.1142/S0219686708001486 Search in Google Scholar

5. Meng, L., Zeng, Y. & Zhu, D. (2017). Investigation on wire electrochemical micro machining of Ni-based metallic glass. Electrochimica Acta, 233, 274–283. DOI: 10.1016/j. electacta.2017.03.045.10.1016/j.electacta.2017.03.045 Search in Google Scholar

6. Dong, S., Wang, Z. & Wang, Y. (2017). High-speed electrochemical discharge drilling (HSECDD) for micro-holes on C17200 beryllium copper alloy in deionized water. The International J. Adv. Manufact. Technol. 88(1), 827–835. DOI: 10.1007/s00170-016-8645-x.10.1007/s00170-016-8645-x Search in Google Scholar

7. Soundarrajan, M. & Thanigaivelan, R. (2019). Investigation of electrochemical micromachining process using ultrasonic heated electrolyte. Adv. Micro and Nano Manufact. Surf. Engin., Springer, Singapore, 423–434. DOI: 10.1007/978-981-32-9425-7_38.10.1007/978-981-32-9425-7_38 Search in Google Scholar

8. Rathod, V., Doloi, B. & Bhattacharyya, B. (2017). Fabrication of microgrooves with varied cross-sections by electro-chemical micromachining. Internat. J. Adv. Manufact. Technol., 92(1), 505–518. DOI: 10.1007/s00170-017-0167-7.10.1007/s00170-017-0167-7 Search in Google Scholar

9. Anasane, S.S. & Bhattacharyya, B. (2016). Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium. Internat. J. Adv. Manufact. Technol., 86(5), 2147–2160. DOI: 10.1007/s00170-015-8309-2.10.1007/s00170-015-8309-2 Search in Google Scholar

10. Thanigaivelan, R., Arunachalam, R.M., Kumar, M. & Dheeraj, B.P. (2018). Performance of electrochemical micromachining of copper through infrared heated electrolyte. Mater. Manufact. Proces., 33(4), 383–389. DOI: 10.1080/10426914.2017.1279304.10.1080/10426914.2017.1279304 Search in Google Scholar

11. Liu, W., Zhang, H., Luo, Z., Zhao, C., Ao, S., Gao, F. & Sun, Y. (2018). Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte. J. Mater. Proces. Technol., 255, 784–794. DOI: 10.1016/j. jmatprotec.2018.01.009.10.1016/j.jmatprotec.2018.01.009 Search in Google Scholar

12. Geethapriyan, T., Samson, R.M., Thavamani, J., Arun Raj, A.C. & Pulagam, B.R. (2019). Experimental investigation of electrochemical micro-machining process parameters on stainless steel 316 using sodium chloride electrolyte. Adv. Manufact. Proces. Springer, Singapore, 471-480. DOI: 10.1007/978-981-13-1724-8_45.10.1007/978-981-13-1724-8_45 Search in Google Scholar

13. Bhuyan, B.K. & Yadava, V. (2013). Experimental modeling and multi-objective optimization of traveling wire electro-chemical spark machining (TW-ECSM) process. J. Mech. Sci. Technol., 27(8), 2467–2476. DOI: 10.1007/s12206-013-0632-7.10.1007/s12206-013-0632-7 Search in Google Scholar

14. Sethi, A., Acharya, B.R. & Saha, P. (2022). Electrochemical dissolution of WC-Co micro-tool in micro-WECM using an Eco-friendly citric acid mixed NaNO3 electrolyte. J. The Electrochem. Soc., 169(3), 033503. DOI: 10.1149/1945-7111/ac54d9.10.1149/1945-7111/ac54d9 Search in Google Scholar

15. Yu, N., Fang, X., Meng, L., Zeng, Y. & Zhu, D. (2018). Electrochemical micromachining of titanium microstructures in an NaCl–ethylene glycol electrolyte. J. Appl. Electrochem., 48(3), 263–273. DOI: 10.1007/s10800-018-1145-y.10.1007/s10800-018-1145-y Search in Google Scholar

16. Tak, M., Reddy S.V., Mishra, A. & Mote, R.G. (2018). Investigation of pulsed electrochemical micro-drilling on titanium alloy in the presence of complexing agent in electrolyte. J. Micromanufac., 1(2), 142–153. DOI: 10.1177/2516598418784682.10.1177/2516598418784682 Search in Google Scholar

17. Ma, N., Phattharasupakun, N., Wutthiprom, J., Tanggarnjanavalukul, C., Wuanprakhon, P., Kidkhunthod, P. & Sawangphruk, M. (2018). High-performance hybrid supercapacitor of mixed-valence manganese oxide/n-doped graphene aerogel nanoflower using an ionic liquid with a redox additive as the electrolyte: In situ electrochemical x-ray absorption spectroscopy. Electrochimica Acta, 271, 110–119. DOI: org/10.1016/j. electacta.2018.03.116.10.1016/j.electacta.2018.03.116 Search in Google Scholar

18. Singh, P.K., Das, A.K., Hatui, G. & Nayak, G.C. (2017). Shape controlled green synthesis of CuO nanoparticles through ultrasonic assisted electrochemical discharge process and its application for supercapacitor. Mater. Chem. Phys., 198, 16–34. DOI: 10.1016/j.matchemphys.2017.04.070.10.1016/j.matchemphys.2017.04.070 Search in Google Scholar

19. Sekar, T., Arularasu, M. & Sathiyamoorthy, V. (2016). Investigations on the effects of Nano-fluid in ECM of die steel. Measurement, 83, 38–43. DOI: 10.1016/j.measurement.2016.01.035.10.1016/j.measurement.2016.01.035 Search in Google Scholar

20. Jiang, K., Wu, X., Lei, J., Wu, Z., Wu, W., Li, W. & Diao, D. (2018). Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte. Internat. J. Adv. Manufac. Technol., 97(9), 3565–3574. DOI: 10.1007/s00170-018-2190-8.10.1007/s00170-018-2190-8 Search in Google Scholar

21. Geethapriyan, T., Muthuramalingam, T., Vasanth, S., Thavamani, J. & Srinivasan, V.H. (2019). Influence of nanoparticles-suspended electrolyte on machinability of stainless steel 430 using electrochemical micro-machining process. Adv. Manufac. Proces. Sprin., Singap. 433–440. DOI: 10.1007/978-981-13-1724-8_42.10.1007/978-981-13-1724-8_42 Search in Google Scholar

22. Kumaar, J.R.V., Thanigaivelan, R. & Soundarrajan, M. (2022). A performance study of electrochemical micro-machining on SS 316L using suspended copper metal powder along with stirring effect. Mater. Manufac. Proces., 1–14. DOI: 10.1080/10426914.2022.2030874.10.1080/10426914.2022.2030874 Search in Google Scholar

23. Yang, Y., Natsu, W. & Zhao, W. (2011). Realization of eco-friendly electrochemical micromachining using mineral water as an electrolyte. Precision Engin., 35(2), 204–213. DOI: 10.1016/j.precisioneng.2010.09.009.10.1016/j.precisioneng.2010.09.009 Search in Google Scholar

24. Geethapriyan, T., Kalaichelvan, K. & Muthuramalingam, T. (2016). Multi performance optimization of electrochemical micro-machining process surface related parameters on machining Inconel 718 using Taguchi-grey relational analysis. La Metallurgia Italiana, 2016(4), 13–19. Search in Google Scholar

25. Fard, A.F. & Hajiaghaei-Keshteli, M. (2016). Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating. Internat. Confer. Ind. Engin., IEEE 12, 331–342. Search in Google Scholar

26. Pradeep, N., Sundaram, K.S. & Kumar, M.P. (2020). Performance investigation of variant polymer graphite electrodes used in electrochemical micromachining of ASTM A240 grade 304. Mater. Manufact. Proces., 35(1), 72–85. DOI: 10.1080/10426914.2019.1697445.10.1080/10426914.2019.1697445 Search in Google Scholar

27. Krishnan, N., Deepak, J. & Hariharan, P. (2020). Multi-response optimization of electrochemical micromachining on masked SS304. Engin. Res. Express, 2(1), 015041. DOI: 10.1088/2631-8695/ab5eb9.10.1088/2631-8695/ab5eb9 Search in Google Scholar

28. Panigrahi, D., Rout, S., Patel, S.K. and Dhupal, D. (2021). Stray current and its consequences on microstructure of Hastelloy C-276 during parametric investigation on geometrical features: fabricated by electrochemical micromachining. Inter-nat. J. Adv. Manufact. Technol., 112(1), 133–156. DOI:10.1007/s00170-020-06365-9.10.1007/s00170-020-06365-9 Search in Google Scholar

29. Prakash, J. & Gopalakannan, S. (2021). Teaching— learning-based optimization coupled with response surface methodology for micro electrochemical machining of aluminium nanocomposite. Silicon, 13(2), 409–432. DOI: 10.1007/s12633-020-00434-0.10.1007/s12633-020-00434-0 Search in Google Scholar

30. Ranganayakulu, J., Srihari, P.V. & Rao, K.V. (2021). An optimization strategy to improve performance in electrochemical discharge machining of borosilicate glass using graph theory algorithm and desirability index. Silicon, 1–14. DOI: 10.1007/s12633-021-01317-8.10.1007/s12633-021-01317-8 Search in Google Scholar

31. Gautam, N., Goyal, A., Sharma, S.S., Oza, A.D. & Kumar, R., 2022. Study of various optimization techniques for electric discharge machining and electrochemical machining processes. Materials Today: Proceedings, 57, 615–621. DOI: 10.1016/j.matpr.2022.02.005.10.1016/j.matpr.2022.02.005 Search in Google Scholar

32. Aslan, N.E.V.Z.A.T. & Cebeci, Y.A.K.U.P. (2007). Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 86(1–2), 90–97. DOI: 10.1016/j.fuel.2006.06.010.10.1016/j.fuel.2006.06.010 Search in Google Scholar

33. Barabadi, H., Honary, S., Ebrahimi, P., Alizadeh, A., Naghibi, F. & Saravanan, M. (2019). Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorganic and Nano-Metal Chemistry, 49(2), 33–43. DOI: 10.1080/24701556.2019.1583251.10.1080/24701556.2019.1583251 Search in Google Scholar

34. Kim, S.G., Harwani, M., Grama, A. & Chaterji, S. (2016). EP-DNN: a deep neural network-based global enhancer prediction algorithm. Scientific reports, 6(1), 1–13. DOI: 10.1038/srep38433.10.1038/srep38433514406227929098 Search in Google Scholar

35. Brammya, G., Praveena, S., Ninu Preetha, N.S., Ramya, R., Rajakumar, B.R. & Binu, D. (2019). Deer hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm. Comp. J. DOI: 10.1093/comjnl/bxy133.10.1093/comjnl/bxy133 Search in Google Scholar

36. Elhami, S. & Razfar, M.R. (2020). Application of nano electrolyte in the electrochemical discharge machining process. Precision Engin., 64, 34–44. DOI: 10.1016/j.precisioneng.2020.03.010.10.1016/j.precisioneng.2020.03.010 Search in Google Scholar

37. Teimouri, R. & Sohrabpoor, H. (2013). Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process. Front. Mech. Engin., 8(4), 429–442. DOI: 10.1007/s11465-013-0277-3.10.1007/s11465-013-0277-3 Search in Google Scholar

38. Charak, A. & Jawalkar, C.S. (2020). Experimental studies in micro channelling on borosilicate glass using RSM optimization technique. Silicon, 12(7), 1707–1721. DOI: 10.1007/s12633-019-00269-4.10.1007/s12633-019-00269-4 Search in Google Scholar

39. Rajput, V., Goud, M. & Suri, N.M. (2021). Performance analysis of closed-loop electrochemical discharge machining (CLECDM) during micro-drilling and response surface methodology based multi-response parametric optimization. Adv. Mater. Process. Technol.1–31. DOI: 10.1080/2374068X.2020.1860494.10.1080/2374068X.2020.1860494 Search in Google Scholar

40. Gopinath, C., Lakshmanan, P. & Amith, S.C. (2021). Production of Micro-holes on Duplex Stainless Steel 2205 by Electrochemical Micromachining: A Grey-RSM Approach. Arabian J. Sci. Engin., 46(3), 2769–2782. DOI: 10.1007/s13369-020-05277-w.10.1007/s13369-020-05277-w Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering