This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Goeller, M., Achenbach, S., Marwan, M., Doris, M. K., Cadet, S., Commandeur, F., Chen, X., Slomka, P. J., Gransar, H., Cao, J. J., Wong, N. D., Albrecht, M. H., Rozanski, A., Tamarappoo, B. K., Berman, D. S., Dey, D. (2018). Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 12 (1), 67–73. https://doi.org/10.1016/j.jcct.2017.11.007GoellerM.AchenbachS.MarwanM.DorisM. K.CadetS.CommandeurF.ChenX.SlomkaP. J.GransarH.CaoJ. J.WongN. D.AlbrechtM. H.RozanskiA.TamarappooB. K.BermanD. S.DeyD.2018Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjectsJournal of Cardiovascular Computed Tomography1216773https://doi.org/10.1016/j.jcct.2017.11.007Search in Google Scholar
Mahabadi, A. A., Lehmann, N., Kälsch, H., Bauer, M., Dykun, I., Kara, K., Moebus, S., Jöckel, K. H., Erbel, R., Möhlenkamp, S. (2014). Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. European Heart Journal Cardiovascular Imaging, 15 (8), 863–869. https://doi.org/10.1093/ehjci/jeu006MahabadiA. A.LehmannN.KälschH.BauerM.DykunI.KaraK.MoebusS.JöckelK. H.ErbelR.MöhlenkampS.2014Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall StudyEuropean Heart Journal Cardiovascular Imaging158863869https://doi.org/10.1093/ehjci/jeu006Search in Google Scholar
Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., Mazurek, T. (2022). Role of epicardial adipose tissue in cardiovascular diseases: A review. Biology, 11 (3), 355. https://doi.org/10.3390/biology11030355KonwerskiM.GąseckaA.OpolskiG.GrabowskiM.MazurekT.2022Role of epicardial adipose tissue in cardiovascular diseases: A reviewBiology113355https://doi.org/10.3390/biology11030355Search in Google Scholar
Davidovich, D., Gastaldelli, A., Sicari, R. (2013). Imaging cardiac fat. European Heart Journal - Cardiovascular Imaging, 14 (7), 625–630. https://doi.org/10.1093/ehjci/jet045DavidovichD.GastaldelliA.SicariR.2013Imaging cardiac fatEuropean Heart Journal - Cardiovascular Imaging147625630https://doi.org/10.1093/ehjci/jet045Search in Google Scholar
Greco, F., Salgado, R., Van Hecke, W., Del Buono, R., Parizel, P. M., Mallio, C. A. (2022). Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature review. Quantitative Imaging in Medicine and Surgery, 12 (3), 2075–2089. https://doi.org/10.21037/qims-21-945GrecoF.SalgadoR.Van HeckeW.Del BuonoR.ParizelP. M.MallioC. A.2022Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature reviewQuantitative Imaging in Medicine and Surgery12320752089https://doi.org/10.21037/qims-21-945Search in Google Scholar
Hoori, A., Hu, T., Lee, J., Al-Kindi, S., Rajagopalan, S., Wilson, D. L. (2022). Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans. Scientific Reports, 12, 2276. https://doi.org/10.1038/s41598-022-06351-zHooriA.HuT.LeeJ.Al-KindiS.RajagopalanS.WilsonD. L.2022Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scansScientific Reports122276https://doi.org/10.1038/s41598-022-06351-zSearch in Google Scholar
Liu, Y., Zhou, J., Liu, L., Zhan, Z., Hu, Y., Fu, Y., Duan, H. (2022). FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation. IEEE Transactions on Medical Imaging, 41 (6), 1482–1496. https://doi.org/10.1109/TMI.2021.3140120LiuY.ZhouJ.LiuL.ZhanZ.HuY.FuY.DuanH.2022FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentationIEEE Transactions on Medical Imaging41614821496https://doi.org/10.1109/TMI.2021.3140120Search in Google Scholar
Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Doel, T., David, A. L., Deprest, J., Ourselin, S., Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Transactions on Medical Imaging, 37 (7), 1562–1573. https://doi.org/10.1109/TMI.2018.2791721WangG.LiW.ZuluagaM. A.PrattR.PatelP. A.AertsenM.DoelT.DavidA. L.DeprestJ.OurselinS.VercauterenT.2018Interactive medical image segmentation using deep learning with image-specific fine-tuningIEEE Transactions on Medical Imaging37715621573https://doi.org/10.1109/TMI.2018.2791721Search in Google Scholar
Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., Guan, Y., Huang, X. (2022). An ensemble of U-Net models for kidney tumor segmentation with CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19 (3), 1387–1392. https://doi.org/10.1109/TCBB.2021.3085608CauseyJ.StubblefieldJ.QuallsJ.FowlerJ.CaiL.WalkerK.GuanY.HuangX.2022An ensemble of U-Net models for kidney tumor segmentation with CT imagesIEEE/ACM Transactions on Computational Biology and Bioinformatics19313871392https://doi.org/10.1109/TCBB.2021.3085608Search in Google Scholar
Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I. (2019). HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Transactions on Medical Imaging, 38 (5), 1116–1126. https://doi.org/10.1109/TMI.2018.2878669DolzJ.GopinathK.YuanJ.LombaertH.DesrosiersC.Ben AyedI.2019HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentationIEEE Transactions on Medical Imaging38511161126https://doi.org/10.1109/TMI.2018.2878669Search in Google Scholar
Ling, Y., Wang, Y., Dai, W., Yu, J., Liang, P., Kong, D. (2024). MTANet: Multi-task attention network for automatic medical image segmentation and classification. IEEE Transactions on Medical Imaging, 43 (2), 674–685. https://doi.org/10.1109/TMI.2023.3317088LingY.WangY.DaiW.YuJ.LiangP.KongD.2024MTANet: Multi-task attention network for automatic medical image segmentation and classificationIEEE Transactions on Medical Imaging432674685https://doi.org/10.1109/TMI.2023.3317088Search in Google Scholar
Zhu, M., Chen, Z., Yuan, Y. (2021). DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images. IEEE Transactions on Medical Imaging, 40 (12), 3315–3325. https://doi.org/10.1109/TMI.2021.3083586ZhuM.ChenZ.YuanY.2021DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope imagesIEEE Transactions on Medical Imaging401233153325https://doi.org/10.1109/TMI.2021.3083586Search in Google Scholar
Celaya, A., Actor, J. A., Muthusivarajan, R., Gates, E., Chung, C., Schellingerhout, D., Riviere, B., Fuentes, D. (2023). PocketNet: A smaller neural network for medical image analysis. IEEE Transactions on Medical Imaging, 42 (4), 1172–1184. https://doi.org/10.1109/TMI.2022.3224873CelayaA.ActorJ. A.MuthusivarajanR.GatesE.ChungC.SchellingerhoutD.RiviereB.FuentesD.2023PocketNet: A smaller neural network for medical image analysisIEEE Transactions on Medical Imaging42411721184https://doi.org/10.1109/TMI.2022.3224873Search in Google Scholar
Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M. (2019). TeTrIS: Template transformer networks for image segmentation with shape priors. IEEE Transactions on Medical Imaging, 38 (11), 2596–2606. https://doi.org/10.1109/TMI.2019.2905990LeeM. C. H.PetersenK.PawlowskiN.GlockerB.SchaapM.2019TeTrIS: Template transformer networks for image segmentation with shape priorsIEEE Transactions on Medical Imaging381125962606https://doi.org/10.1109/TMI.2019.2905990Search in Google Scholar
Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook, S. A., de Marvao, A., Dawes, T., O‘Regan, D. P., Kainz, B., Glocker, B., Rueckert, D. (2018). Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation. IEEE Transactions on Medical Imaging, 37 (2), 384–395. https://doi.org/10.1109/TMI.2017.2743464OktayO.FerranteE.KamnitsasK.HeinrichM.BaiW.CaballeroJ.CookS. A.de MarvaoA.DawesT.O‘ReganD. P.KainzB.GlockerB.RueckertD.2018Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentationIEEE Transactions on Medical Imaging372384395https://doi.org/10.1109/TMI.2017.2743464Search in Google Scholar
Kazemi, A., Keshtkar, A., Rashidi, S., Aslanabadi, N., Khodadad, B., Esmaeili, M. (2020). Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT images. In 2020 25th International Computer Conference, Computer Society of Iran (CSICC). IEEE. https://doi.org/10.1109/CSICC49403.2020.9050072KazemiA.KeshtkarA.RashidiS.AslanabadiN.KhodadadB.EsmaeiliM.2020Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT imagesIn2020 25th International Computer Conference, Computer Society of Iran (CSICC)IEEEhttps://doi.org/10.1109/CSICC49403.2020.9050072Search in Google Scholar
Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E. (2020). Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access, 8, 128032–128041. https://doi.org/10.1109/ACCESS.2020.3008190ZhangQ.ZhouJ.ZhangB.JiaW.WuE.2020Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layerIEEE Access8128032128041https://doi.org/10.1109/ACCESS.2020.3008190Search in Google Scholar
Zlokolica, V., Velicki, L., Janev, M., Mitrinovic, D., Babin, D., Ralevic, N., Cemerlic-Adic, N., Obradovic, R., Galic, I. (2014). Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentation. In Proceedings ELMAR-2014. IEEE. https://doi.org/10.1109/ELMAR.2014.6923347ZlokolicaV.VelickiL.JanevM.MitrinovicD.BabinD.RalevicN.Cemerlic-AdicN.ObradovicR.GalicI.2014Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentationInProceedings ELMAR-2014IEEEhttps://doi.org/10.1109/ELMAR.2014.6923347Search in Google Scholar
Zhao, F., Hu, H., Chen, Y., Liang, J., He, X., Hou, Y. (2019). Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional network. IEEE Access, 7, 57881–57893. https://doi.org/10.1109/ACCESS.2019.2912467ZhaoF.HuH.ChenY.LiangJ.HeX.HouY.2019Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional networkIEEE Access75788157893https://doi.org/10.1109/ACCESS.2019.2912467Search in Google Scholar