Accesso libero

An Enhanced Measurement of Epicardial Fat Segmentation and Severity Classification using Modified U-Net and FOA-guided XGBoost

 e   
07 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Goeller, M., Achenbach, S., Marwan, M., Doris, M. K., Cadet, S., Commandeur, F., Chen, X., Slomka, P. J., Gransar, H., Cao, J. J., Wong, N. D., Albrecht, M. H., Rozanski, A., Tamarappoo, B. K., Berman, D. S., Dey, D. (2018). Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects. Journal of Cardiovascular Computed Tomography, 12 (1), 67–73. https://doi.org/10.1016/j.jcct.2017.11.007 GoellerM. AchenbachS. MarwanM. DorisM. K. CadetS. CommandeurF. ChenX. SlomkaP. J. GransarH. CaoJ. J. WongN. D. AlbrechtM. H. RozanskiA. TamarappooB. K. BermanD. S. DeyD. 2018 Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects Journal of Cardiovascular Computed Tomography 12 1 67 73 https://doi.org/10.1016/j.jcct.2017.11.007 Search in Google Scholar

Mahabadi, A. A., Lehmann, N., Kälsch, H., Bauer, M., Dykun, I., Kara, K., Moebus, S., Jöckel, K. H., Erbel, R., Möhlenkamp, S. (2014). Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study. European Heart Journal Cardiovascular Imaging, 15 (8), 863–869. https://doi.org/10.1093/ehjci/jeu006 MahabadiA. A. LehmannN. KälschH. BauerM. DykunI. KaraK. MoebusS. JöckelK. H. ErbelR. MöhlenkampS. 2014 Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall Study European Heart Journal Cardiovascular Imaging 15 8 863 869 https://doi.org/10.1093/ehjci/jeu006 Search in Google Scholar

Konwerski, M., Gąsecka, A., Opolski, G., Grabowski, M., Mazurek, T. (2022). Role of epicardial adipose tissue in cardiovascular diseases: A review. Biology, 11 (3), 355. https://doi.org/10.3390/biology11030355 KonwerskiM. GąseckaA. OpolskiG. GrabowskiM. MazurekT. 2022 Role of epicardial adipose tissue in cardiovascular diseases: A review Biology 11 3 355 https://doi.org/10.3390/biology11030355 Search in Google Scholar

Davidovich, D., Gastaldelli, A., Sicari, R. (2013). Imaging cardiac fat. European Heart Journal - Cardiovascular Imaging, 14 (7), 625–630. https://doi.org/10.1093/ehjci/jet045 DavidovichD. GastaldelliA. SicariR. 2013 Imaging cardiac fat European Heart Journal - Cardiovascular Imaging 14 7 625 630 https://doi.org/10.1093/ehjci/jet045 Search in Google Scholar

Greco, F., Salgado, R., Van Hecke, W., Del Buono, R., Parizel, P. M., Mallio, C. A. (2022). Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature review. Quantitative Imaging in Medicine and Surgery, 12 (3), 2075–2089. https://doi.org/10.21037/qims-21-945 GrecoF. SalgadoR. Van HeckeW. Del BuonoR. ParizelP. M. MallioC. A. 2022 Epicardial and pericardial fat analysis on CT images and artificial intelligence: A literature review Quantitative Imaging in Medicine and Surgery 12 3 2075 2089 https://doi.org/10.21037/qims-21-945 Search in Google Scholar

Hoori, A., Hu, T., Lee, J., Al-Kindi, S., Rajagopalan, S., Wilson, D. L. (2022). Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans. Scientific Reports, 12, 2276. https://doi.org/10.1038/s41598-022-06351-z HooriA. HuT. LeeJ. Al-KindiS. RajagopalanS. WilsonD. L. 2022 Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans Scientific Reports 12 2276 https://doi.org/10.1038/s41598-022-06351-z Search in Google Scholar

Liu, Y., Zhou, J., Liu, L., Zhan, Z., Hu, Y., Fu, Y., Duan, H. (2022). FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation. IEEE Transactions on Medical Imaging, 41 (6), 1482–1496. https://doi.org/10.1109/TMI.2021.3140120 LiuY. ZhouJ. LiuL. ZhanZ. HuY. FuY. DuanH. 2022 FCP-Net: A feature-compression-pyramid network guided by game-theoretic interactions for medical image segmentation IEEE Transactions on Medical Imaging 41 6 1482 1496 https://doi.org/10.1109/TMI.2021.3140120 Search in Google Scholar

Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., Doel, T., David, A. L., Deprest, J., Ourselin, S., Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Transactions on Medical Imaging, 37 (7), 1562–1573. https://doi.org/10.1109/TMI.2018.2791721 WangG. LiW. ZuluagaM. A. PrattR. PatelP. A. AertsenM. DoelT. DavidA. L. DeprestJ. OurselinS. VercauterenT. 2018 Interactive medical image segmentation using deep learning with image-specific fine-tuning IEEE Transactions on Medical Imaging 37 7 1562 1573 https://doi.org/10.1109/TMI.2018.2791721 Search in Google Scholar

Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., Guan, Y., Huang, X. (2022). An ensemble of U-Net models for kidney tumor segmentation with CT images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19 (3), 1387–1392. https://doi.org/10.1109/TCBB.2021.3085608 CauseyJ. StubblefieldJ. QuallsJ. FowlerJ. CaiL. WalkerK. GuanY. HuangX. 2022 An ensemble of U-Net models for kidney tumor segmentation with CT images IEEE/ACM Transactions on Computational Biology and Bioinformatics 19 3 1387 1392 https://doi.org/10.1109/TCBB.2021.3085608 Search in Google Scholar

Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I. (2019). HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Transactions on Medical Imaging, 38 (5), 1116–1126. https://doi.org/10.1109/TMI.2018.2878669 DolzJ. GopinathK. YuanJ. LombaertH. DesrosiersC. Ben AyedI. 2019 HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation IEEE Transactions on Medical Imaging 38 5 1116 1126 https://doi.org/10.1109/TMI.2018.2878669 Search in Google Scholar

Ling, Y., Wang, Y., Dai, W., Yu, J., Liang, P., Kong, D. (2024). MTANet: Multi-task attention network for automatic medical image segmentation and classification. IEEE Transactions on Medical Imaging, 43 (2), 674–685. https://doi.org/10.1109/TMI.2023.3317088 LingY. WangY. DaiW. YuJ. LiangP. KongD. 2024 MTANet: Multi-task attention network for automatic medical image segmentation and classification IEEE Transactions on Medical Imaging 43 2 674 685 https://doi.org/10.1109/TMI.2023.3317088 Search in Google Scholar

Zhu, M., Chen, Z., Yuan, Y. (2021). DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images. IEEE Transactions on Medical Imaging, 40 (12), 3315–3325. https://doi.org/10.1109/TMI.2021.3083586 ZhuM. ChenZ. YuanY. 2021 DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images IEEE Transactions on Medical Imaging 40 12 3315 3325 https://doi.org/10.1109/TMI.2021.3083586 Search in Google Scholar

Celaya, A., Actor, J. A., Muthusivarajan, R., Gates, E., Chung, C., Schellingerhout, D., Riviere, B., Fuentes, D. (2023). PocketNet: A smaller neural network for medical image analysis. IEEE Transactions on Medical Imaging, 42 (4), 1172–1184. https://doi.org/10.1109/TMI.2022.3224873 CelayaA. ActorJ. A. MuthusivarajanR. GatesE. ChungC. SchellingerhoutD. RiviereB. FuentesD. 2023 PocketNet: A smaller neural network for medical image analysis IEEE Transactions on Medical Imaging 42 4 1172 1184 https://doi.org/10.1109/TMI.2022.3224873 Search in Google Scholar

Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M. (2019). TeTrIS: Template transformer networks for image segmentation with shape priors. IEEE Transactions on Medical Imaging, 38 (11), 2596–2606. https://doi.org/10.1109/TMI.2019.2905990 LeeM. C. H. PetersenK. PawlowskiN. GlockerB. SchaapM. 2019 TeTrIS: Template transformer networks for image segmentation with shape priors IEEE Transactions on Medical Imaging 38 11 2596 2606 https://doi.org/10.1109/TMI.2019.2905990 Search in Google Scholar

Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook, S. A., de Marvao, A., Dawes, T., O‘Regan, D. P., Kainz, B., Glocker, B., Rueckert, D. (2018). Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation. IEEE Transactions on Medical Imaging, 37 (2), 384–395. https://doi.org/10.1109/TMI.2017.2743464 OktayO. FerranteE. KamnitsasK. HeinrichM. BaiW. CaballeroJ. CookS. A. de MarvaoA. DawesT. O‘ReganD. P. KainzB. GlockerB. RueckertD. 2018 Anatomically constrained neural networks (ACNNs): Application to cardiac image enhancement and segmentation IEEE Transactions on Medical Imaging 37 2 384 395 https://doi.org/10.1109/TMI.2017.2743464 Search in Google Scholar

Kazemi, A., Keshtkar, A., Rashidi, S., Aslanabadi, N., Khodadad, B., Esmaeili, M. (2020). Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT images. In 2020 25th International Computer Conference, Computer Society of Iran (CSICC). IEEE. https://doi.org/10.1109/CSICC49403.2020.9050072 KazemiA. KeshtkarA. RashidiS. AslanabadiN. KhodadadB. EsmaeiliM. 2020 Automated segmentation of cardiac fats based on extraction of textural features from non-contrast CT images In 2020 25th International Computer Conference, Computer Society of Iran (CSICC) IEEE https://doi.org/10.1109/CSICC49403.2020.9050072 Search in Google Scholar

Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E. (2020). Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access, 8, 128032–128041. https://doi.org/10.1109/ACCESS.2020.3008190 ZhangQ. ZhouJ. ZhangB. JiaW. WuE. 2020 Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer IEEE Access 8 128032 128041 https://doi.org/10.1109/ACCESS.2020.3008190 Search in Google Scholar

Zlokolica, V., Velicki, L., Janev, M., Mitrinovic, D., Babin, D., Ralevic, N., Cemerlic-Adic, N., Obradovic, R., Galic, I. (2014). Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentation. In Proceedings ELMAR-2014. IEEE. https://doi.org/10.1109/ELMAR.2014.6923347 ZlokolicaV. VelickiL. JanevM. MitrinovicD. BabinD. RalevicN. Cemerlic-AdicN. ObradovicR. GalicI. 2014 Epicardial fat registration by local adaptive morphology-thresholding based 2D segmentation In Proceedings ELMAR-2014 IEEE https://doi.org/10.1109/ELMAR.2014.6923347 Search in Google Scholar

Zhao, F., Hu, H., Chen, Y., Liang, J., He, X., Hou, Y. (2019). Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional network. IEEE Access, 7, 57881–57893. https://doi.org/10.1109/ACCESS.2019.2912467 ZhaoF. HuH. ChenY. LiangJ. HeX. HouY. 2019 Accurate segmentation of heart volume in CTA with landmark-based registration and fully convolutional network IEEE Access 7 57881 57893 https://doi.org/10.1109/ACCESS.2019.2912467 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Ingegneria, Elettrotecnica, Ingegneria dell'automazione, metrologia e collaudo