Uneingeschränkter Zugang

The Role of Edaphic and Vegetation Factors in Structuring Beta Diversity of the Soil Macrofauna Community of the Dnipro River Arena Terrace


Zitieren

Abramowitz, M. & Stegun I.E. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Washington DC: U.S. Department of Commerce, National Bureau of Standards.Search in Google Scholar

Alahuhta, J., Kosten, S., Akasaka, M., Auderset, D., Azzella, M.M., Bolpagni, R., Bove, C.P., Chambers, P.A., Chappuis, E., Clayton, J., de Winton, M., Ecke, F., Gacia, E., Gecheva, G., Grillas, P., Hauxwell, J., Hellsten, S., Hjort, J., Hoyer, M.V., Ilg, C., Kolada, A., Kuoppala, M., Lauridsen, T., Li, E.H., Lukács, B.A., Mjelde, M., Mikulyuk, A., Mormul, R.P., Nishihiro, J., Oertli, B., Rhazi, L., Rhazi, M., Sass, L., Schranz, C., Søndergaard, M., Yamanouchi, T., Yu, Q., Wang, H., Willby, N., Zhang, X.K. & Heino J. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr., 44, 1758−1769. DOI: 10.1111/jbi.12978.10.1111/jbi.12978Open DOISearch in Google Scholar

Andreeva, R.V. (1990). Identification key to gadfly larvae (in Russian). Kiev: Naukova dumka.Search in Google Scholar

Ayuke, F.O., Karanja, N.K., Muya, E.M., Musombi, B.K., Munyati, J. & Nyamasyo G.H. (2009). Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Tropical and Subtropical Agroecosytems, 11, 371−384.Search in Google Scholar

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr., 19, 134−143. DOI: 10.1111/j.1466-8238.2009.00490.x.10.1111/j.1466-8238.2009.00490.xOpen DOISearch in Google Scholar

Belgard, A.L. (1950). The forest vegetation of the south east of the Ukraine (in Russian). Kiev: Kiev University Press.Search in Google Scholar

Belgard, A.L. (1971). Steppe forestry (in Russian). Moscow: Forest Industry.Search in Google Scholar

Berg, M.P. & Bengtsson J. (2007). Spatial and temporal variation in food web composition. Oikos, 116, 1789−1804. DOI: 10.1111/j.0030-1299.2007.15748.x.10.1111/j.0030-1299.2007.15748.xOpen DOISearch in Google Scholar

Berg, M.P. (2012). Patterns of biodiversity at fine and small spatial scales. In D.H. Wall, R.D. Bardgett, V. Behan-Pelle-tier, J.E. Herrick, T.H. Jones, K. Ritz, J. Six, D.R. Strong & W.H. van der Putten (Eds.), Soil ecology and ecosystem services (pp. 136−152). Oxford: Oxfod University Press.Search in Google Scholar

Bockheim, J.G., Gennadiyev, A.N., Hartemink, A.E. & Brevik E.C. (2014). Soil-forming factors and Soil Taxonomy. Geoderma, 226−227, 231−237. DOI: 10.1016/j.geoderma.2014.02.016.10.1016/j.geoderma.2014.02.016Open DOISearch in Google Scholar

Bonato, L., Minelli, A., Lopresti, M. & Cerretti P. (2014). ChiloKey, an interactive identification tool for the geophilomorph centipedes of Europe (Chilopoda, Geophilomorpha). ZooKeys, 443, 1−9. DOI: 10.3897/zookeys.443.753010.3897/zookeys.443.7530420550025349493Open DOISearch in Google Scholar

Burton, V.J. & Eggleton P. (2016). Microhabitat heterogeneity enhances soil macrofauna and plant species diversity in an Ash - Field Maple woodland. Eur. J. Soil Biol., 75, 97−106. DOI: 10.1016/j.ejsobi.2016.04.012.10.1016/j.ejsobi.2016.04.012Open DOISearch in Google Scholar

Buzuk, G.N. (2017). Phytoindication using ecological scales and regression analysis: ecological index (in Russian). Vestnik Farmacii, 2(76), 31−37.Search in Google Scholar

Carpenter, D., Hammond, P.M., Sherlock, E., Lidgett, A., Leigh, K. & Eggleton P. (2012). Biodiversity of soil macrofauna in the New Forest: a benchmark study across a national park landscape. Biodivers. Conserv., 21, 3385−3410. DOI: 10.1007/s10531-012-0369-0.10.1007/s10531-012-0369-0Open DOISearch in Google Scholar

Cesarz, S., Fahrenholz, N., Migge-Kleian, S., Platner, C. & Schaefer M. (2007). Earthworm communities in relation to tree diversity in a deciduous forest. Eur. J. Soil Biol., 43, S61−S67. DOI: 10.1016/j.ejsobi.2007.08.003.10.1016/j.ejsobi.2007.08.003Open DOISearch in Google Scholar

Cherny, N.G. & Golovach S.J. (1993). Millipedes of the lowland territory of Ukraine (in Russian). Kiev.Search in Google Scholar

Chust, G., Pretus, J.L., Ducrot, D., Bedo`s, A. & Deharveng L. (2003). Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modeling. Conserv. Biol., 17, 1712−1723. DOI: 10.1111/j.1523-1739.2003.00564.x.10.1111/j.1523-1739.2003.00564.xOpen DOISearch in Google Scholar

Chust, G., Pretus, J.L., Ducrot, D. & Ventura D. (2004). Scale dependency of insect assemblages in response to landscape pattern. Landsc. Ecol., 19, 41−57. DOI: 10.1023/B:LAND.0000018368.99833.f2.10.1023/B:.0000018368.99833.f2Open DOISearch in Google Scholar

Dauber, J., Hirsch, M., Simmering, D., Waldhardt, R., Otte, A. & Wolters V. (2003). Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric. Ecosyst. Environ., 98, 321−329. DOI: 10.1016/S0167-8809(03)00092-6.10.1016/S0167-8809(03)00092-6Open DOISearch in Google Scholar

Dauber, J., Purtauf, T., Allspach, A., Frisch, J., Voigtlander, K. & Wolters V. (2005). Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of different mobility. Glob. Ecol. Biogeogr., 14, 213−221. DOI: 10.1111/j.1466-822X.2005.00150.x.10.1111/j.1466-822X.2005.00150.xOpen DOISearch in Google Scholar

de Wijs, H.J. (1951). Statistics of ore distribution: Part I. Frequency distribution of assay values. Journal of the Royal Netherlands Geological and Mining Society, New Series, 13, 365−375.Search in Google Scholar

de Wijs, H.J. (1953). Statistics of ore distribution: Part II. Theory of binomial distribution applied to sampling and engineering problems. Journal of the Royal Netherlands Geological and Mining Society, New Series, 15, 12−24.Search in Google Scholar

De’ath, G. (2012). The multinomial diversity model: Linking shannon diversity to multiple predictors. Ecology, 323, 116−119. DOI: 10.1890/11-2155.1.10.1890/11-2155.123185889Open DOISearch in Google Scholar

De’ath, G. (2013). Code for mdm was adapted from multinom in the nnet package. MDM: Multinomial Diversity Model. R package version 1.3. https://CRAN.R-project.org/package=MDMSearch in Google Scholar

Decaëns, T., Jiménez, J.J., Gioia, C., Measey, G.J. & Lavelle P. (2006). The values of soil animals for conservation biology. Eur. J. Soil Biol., 42(1), S23−S38. DOI: 10.1016/j.ejsobi.2006.07.001.10.1016/j.ejsobi.2006.07.001Open DOISearch in Google Scholar

Didukh, Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kiev: Phytosociocentre.Search in Google Scholar

Didukh, Ya.P. (2012). The principles of the bioindication (in Ukranian). Kiev: Naukova dumka.Search in Google Scholar

Dinno, A. (2012). Paran: Horn’s Test of Principal Components/Factors. R package version 1.5.1. https://CRAN.R-project.org/package=paranSearch in Google Scholar

Dokuchaev, V.V. (1883). Russian Chernozem. Selected works of V.V. Dokuchaev, vol. I. Israel Program for Scientific Translations, Jerusalem (translated in 1967).Search in Google Scholar

Dolin, V.G. (1978). Identification key to larvae of click beetles fauna of the USSR (in Russian). Kiev: Urozhay.Search in Google Scholar

Eggleton, P., Vanbergen, A.J., Jones, D.T., Lambert, M.C., Rockett, C., Hammond P.M., Beccaloni, J., Marriott, D., Ross, E. & Giusti A. (2005). Assemblages of soil macrofauna across a Scottish landuse intensification gradient: influences of habitat quality, heterogeneity and area. J. Appl. Ecol., 42, 1153−1164. DOI: 10.1111/j.1365-2664.2005.01090.x.10.1111/j.1365-2664.2005.01090.xOpen DOISearch in Google Scholar

Ellenberg, H. (1974). Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica, 9, 197.Search in Google Scholar

Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M., Joschko, M. & Timmer J. (2016). Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59(1), 27−36. DOI: 10.1016/j.pedobi.2015.12.003.10.1016/j.pedobi.2015.12.003Open DOISearch in Google Scholar

Gilarov, M.S. (1949). Pecularities of the soil as environment and its role in the evolution of insects (in Russian). Moscow.Search in Google Scholar

Gilyarov, M.S. (Ed.) (1964). Identification key to soil-inhabiting insect larvae (in Russian). Moscow: Nauka.Search in Google Scholar

Gongalsky, K.B., Gorshkova, I.A., Karpov, A.I. & Pokarzhevskii A.D. (2008). Do boundaries of soil animal and plant communities coincide? A case study of a Mediterranean forest in Russia. Eur. J. Soil Biol., 44(4), 355−363. DOI: 10.1016/j.ejsobi.2008.04.004.10.1016/j.ejsobi.2008.04.004Open DOISearch in Google Scholar

Gongalsky, K.B., Zaytsev, A.S. & Savin F.A. (2009). Spatial distribution of soil animals: a geostatistical approach. Biology Bulletin Reviews, 70(6), 484−494.Search in Google Scholar

Gural-Sverlova, N.V. & Gural R.I. (2012). Identification book of the terrestrial molluscs of Ukraine (in Ukranian). Lviv.Search in Google Scholar

Handcock, M.S. & Stein M.L. (1993). A Bayesian analysis of kriging. Technometrics, 35, 403−410. DOI: 10.2307/1270273.10.2307/1270273Open DOISearch in Google Scholar

Horn, J.L. (1965). A rationale and a test for the number of factors in factor analysis. Psychometrika, 30, 179−185. DOI: 10.1007/BF02289447.10.1007/BF0228944714306381Open DOISearch in Google Scholar

Huston, M.A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos, 86, 393− 401. DOI: 10.2307/3546645.10.2307/3546645Open DOISearch in Google Scholar

Jabin, M., Mohr, D., Kappes, H. & Topp W. (2004). Influence of deadwood on density of soil macro-arthropods in a managed oakebeech forest. For. Ecol. Manag., 194, 61−69. DOI: 10.1016/j.foreco.2004.01.053.10.1016/j.foreco.2004.01.053Open DOISearch in Google Scholar

Jackson, R.B. & Caldwell M.M. (1993). Geostatistical patterns of soil heterogeneity around individual perennial plants. J. Ecol., 81(4), 683−692. DOI: 10.2307/2261666.10.2307/2261666Open DOISearch in Google Scholar

Jackson, R.B. & Caldwell M.M. (1996). Integrating resource heterogeneity and plant plasticity: modeling nitrate and phosphate uptake in a patchy soil environment. J. Ecol., 84, 891−903. DOI: 10.2307/2960560.10.2307/2960560Open DOISearch in Google Scholar

Jenny, H. (1941). Factors of soil formation. A system of quantitative pedology. New York: McGraw-Hill.Search in Google Scholar

Kabakov, O.N. (2006). Scarab beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae) of Russia and adjacent countries (in Russian). Moscow: Partnership Scientific Publications KMK.Search in Google Scholar

Kamau, S., Barrios, E., Karanja, N.K., Ayuke, F.O. & Lehmann J. (2017). Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol. Biochem., 112, 35−46. DOI: 10.1016/j.soil-bio.2017.04.016.10.1016/j.soil-bio.2017.04.016Open DOISearch in Google Scholar

Kirby, K.N. & Gerlanc D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45, 905−927. DOI: 10.3758/s13428-013-0330-5.10.3758/s13428-013-0330-5Open DOISearch in Google Scholar

Korboulewsky, N.B., Pereza, G. & Chauvat M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem., 94, 94−106. DOI: 10.1016/j.soilbio.2015.11.02.10.1016/j.soilbio.2015.11.02Open DOISearch in Google Scholar

Krivolutsky, D.A. (1994). Soil fauna in ecological control (in Russian). Moscow: Nauka.Search in Google Scholar

Krivosheina, M.G. (2012). Identification book of the families and genera of Palaearctic dipteran insects of the suborder Nematocera, based on larvae (in Russian). Moscow: Partnership Scientific Publications KMK.Search in Google Scholar

Kryzhanovsky, O.L. (1964). Carabidae - Ground Beetles (in Russian). In G.A. Bey-Bienko (Ed.), Insects of the European part of the USSR. V. 5. Beetles and Strepsiptera (pp. 23−68).Search in Google Scholar

Kunah, O.N., Zhukov, O.V. & Pahomov A.Y. (2010). Earthworm morphology (Lumbricidae) (in Ukranian). Dnipropetrovsk.Search in Google Scholar

Lavelle, P. (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv. Ecol. Res., 27, 93−132.10.1016/S0065-2504(08)60007-0Search in Google Scholar

Lavelle, P. (2002). Functional domains in soils. Ecol. Res., 17, 441−450. DOI: 10.1046/j.1440-1703.2002.00509.x.10.1046/j.1440-1703.2002.00509.xOpen DOISearch in Google Scholar

Lavelle, P., Decaëns, T., Aubert, M., Barota, S., Blouin, M., Bureau, F., Margerie, P. Mora, P. & Rossi J.-P. (2006). Soil invertebrates and ecosystem services. Eur. J. Soil Biol., 42(1), S3−S15. DOI: 10.1016/j.ejsobi.2006.10.002.10.1016/j.ejsobi.2006.10.002Open DOISearch in Google Scholar

Legendre, P., Borcard, D. & Peres-Neto P.R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr., 75, 435−450. DOI: 10.1890/05-0549.10.1890/05-0549Open DOISearch in Google Scholar

Lukac, M. (2017). Soil biodiversity and environmental change in European forests. Central European Forestry Journal, 63, 59−65. DOI: 10.1515/forj-2017-0010.10.1515/forj-2017-0010Open DOISearch in Google Scholar

Marcon, E. & Herault B. (2015). Entropart: An R Package to Measure and Partition Diversity. Journal of Statistical Software, 67(8), 1−26. DOI: 10.18637/jss.v067.i08.10.18637/jss.v067.i08Search in Google Scholar

Matern, B. (1986). Spatial variation. Lecture notes in statistics. New York: Springer.10.1007/978-1-4615-7892-5Search in Google Scholar

Mathieu, J., Grimaldi, M., Jouquet, P., Rouland, C., Lavelle, P., Desjardins, T. & Rossi J.P. (2009). Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biol. Biochem., 41, 586−593. DOI: 10.1016/j.soilbio.2008.12.020.10.1016/j.soilbio.2008.12.020Open DOISearch in Google Scholar

Mathieu, J., Rossi, J.P., Grimaldi, M., Mora, P., Lavelle, P. & Rouland C. (2004). Biol. Fertil. Soils, 40, 300. DOI: 10.1007/s00374-004-0777-8.10.1007/s00374-004-0777-8Open DOISearch in Google Scholar

McBratney, A.B. & Pringle M.J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1, 125−152. DOI: 10.1023/A:1009995404447.10.1023/A:1009995404447Open DOISearch in Google Scholar

Migge-Kleian, S., Cesarz, S., Fahrenholz, N., Platner, C. & Schaefer M. (2007). Earthworm communities in relation to tree diversity in a deciduous forest. Eur. J. Soil Biol., 43, 61−67.Search in Google Scholar

Minasny, B. & McBratney A.B. (2005). The matern function as a general model for soil variograms. Geoderma, 128, 192−207. DOI: 10.1016/j.geoderma.2005.04.003.10.1016/j.geoderma.2005.04.003Open DOISearch in Google Scholar

Nuutinen, V., Butt, K.R., Hyväluoma, J., Ketoja, E. & Mikola J. (2017). Soil faunal and structural responses to the settlement of a semi-sedentary earthworm Lumbricus terrestris in an arable clay field. Soil Biol. Biochem., 115, 285−296. DOI: 10.1016/j.soilbio.2017.09.001.10.1016/j.soilbio.2017.09.001Open DOISearch in Google Scholar

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner H. (2017). Community ecology package. R package version 2.4-5. https://CRAN.R-project.org/package=veganSearch in Google Scholar

Olff, H. & Ritchie M.E. (2002). Fragmented nature: consequences for biodiversity. Landsc. Urban Plann., 58, 83−92. DOI: 10.1016/S0169-2046(01)00211-0.10.1016/S0169-2046(01)00211-0Open DOISearch in Google Scholar

Pélissier, R., Couteron, P., Dray, S. & Sabatier D. (2003). Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology, 84, 242−251. DOI: 10.1890/0012-9658(2003)084[0242:CBOTAD]2.0.CO;2.10.1890/0012-9658(2003)084[0242:CBOTAD]2.0.CO;2Open DOISearch in Google Scholar

Pennisi, B.V. & van Iersel M. (2002). 3 ways to measure medium EC. GMPro, 22(1), 46−48.Search in Google Scholar

Perel, T.S. (1979). Spread and regularity of the distribution of the earthworms of the USSR fauna (in Russian). Moscow: Nauka.Search in Google Scholar

Reza, S.K., Nayak, D.C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S.K. & Srinivasan R. (2016). Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of Agronomy and Soil Science, 62(7), 972−981. DOI: 10.1080/03650340.2015.1107678.10.1080/03650340.2015.1107678Open DOISearch in Google Scholar

Ribeiro, P.J., Christensen, O.F. & Diggle P.J. (2003). Geostatistical software - geoR and geoRglm. DSC 2003 Working Papers. Available from: https://www.r-project.org/conferences/DSC-2003/Proceedings/RibeiroEtAl.pdfSearch in Google Scholar

Ribeiro, P.J. Jr. & Diggle P.J. (2016). geoR: Analysis of geostatistical data. R package version 1.7-5.2. https://CRAN.R-project.org/package=geoR.Search in Google Scholar

Rossi, J.P. (2003). Clusters in earthworm spatial distribution. Pedobiologia, 47(5−6), 490−496. DOI: 10.1078/0031-4056-00218.10.1078/0031-4056-00218Open DOISearch in Google Scholar

Rossi, J.-R., Lavelle, P. & Tondoh J.E. (1996). Statistical tool for soil biology. XI. Autocorrelogram and Mantel test, European. J. Soil Biol., 32, 195−203.Search in Google Scholar

Schmolzer, K. (1965). Ordnung Isopoda (Landasseln). Liferung 4, 186 S. Liferung 5, 468 S. Berlin: Akademie-Verlag.Search in Google Scholar

Soinenen, J., Lennon, J.J. & Hillebrand H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830−2838. DOI: 10.1890/06-1730.1.10.1890/06-1730.1Open DOISearch in Google Scholar

Soininen, J., Heino, J. & Wang J. (2017). A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr., 27, 96−109. DOI: 10.1111/geb.12660.10.1111/geb.12660Open DOISearch in Google Scholar

Sokolova, T.A. (2011). Rare plant communities of steppe sandy forests vegetation in the north of the Rostov region. Southern scientific center of the Russian Academy of Sciences, 7(4), 66−69.Search in Google Scholar

Stein, M.L. (1999). Interpolation of spatial data: Some theory for Kriging. New York: Springer.10.1007/978-1-4612-1494-6Search in Google Scholar

Sun, B., Zhou, S. & Zhao Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85−99. DOI: 10.1016/S0016-7061(03)00078-8.10.1016/S0016-7061(03)00078-8Open DOISearch in Google Scholar

Tarasov, V.V., (2012). Flora of Dnipropetrovsk and Zaporozhie regions (in Ukranian). Dnipropetrovs: Second ed. Lira.Search in Google Scholar

Vadunina, A.F. & Korchagina S.A. (1986). Methods for research of physical properties of the soil (in Russian). Moscow: Agropromizdat.Search in Google Scholar

Vanbergen, A.J., Watt, A.D., Mitchell, R., Truscott, A.M., Palmer, S.C., Ivits, E., Eggleton, P., Jones, T.H. & Sousa J.P. (2007). Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia, 153(3), 713−725. DOI: 10.1007/s00442-007-0766-3.10.1007/s00442-007-0766-3Open DOISearch in Google Scholar

Vašát, R., Pavlů, L., Borůvka, L., Drábek, O. & Nikodem A. (2013). Mapping the topsoil pH and humus quality of forest soils in the North Bohemian Jizerské hory Mts. region with ordinary, universal, and regression kriging: cross-validation comparison. Soil and Water Research, 8, 97−104.Search in Google Scholar

Viana, D.S., Figuerola, J., Schwenk, K., Manca, M., Hobæk, A., Mjelde, M., Preston, C. D., Gornall, R.J., Croft, J.M., King, R.A., Green, A.J. & Santamaría L. (2016). Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography, 39, 281−288. DOI: 10.1111/ecog.01231.10.1111/ecog.01231Open DOISearch in Google Scholar

Vsevolodova-Perel, T.S. (1997). Earthworms of the Russian fauna (in Russian). Moscow: Nauka.Search in Google Scholar

Warren, M.W. & Zou X. (2002). Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For. Ecol. Manag., 170, 161−171. DOI: 10.1016/S0378-1127(01)00770-8.10.1016/S0378-1127(01)00770-8Open DOISearch in Google Scholar

Webster, R. & Oliver M.A. (2001). Geostatistics for environmental scientists. Chichester John Wiley, Sons.Search in Google Scholar

Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434−449. DOI: 10.1093/biomet/41.3-4.434.10.1093/biomet/41.3-4.434Open DOISearch in Google Scholar

Wolters, V. (2001). Biodiversity of soil fauna and its function. Eur. J. Soil Biol., 37(4), 221−227. DOI:10.1016/S1164-5563(01)01088-3.10.1016/S1164-5563(01)01088-3Open DOISearch in Google Scholar

Zalesskaya, N.T. Identification key of centipedes of the USSR (in Russian). Moscow: Nauka.Search in Google Scholar

Zbinden, Z.D. & Matthews W.J. (2017). Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshw. Biol., 62, 1460−1471. DOI: 10.1111/fwb.12960.10.1111/fwb.12960Open DOISearch in Google Scholar

Zhukov, A.V. (2015). Phoromorphs in ecomorphs system of soil animals. The Journal of V.N.Karazin Kharkiv National University,Series: Biology, 25, 254−266.Search in Google Scholar

Zhukov, A. & Zadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263−278. DOI: 10.1515/eko-2016-0021.10.1515/eko-2016-0021Open DOISearch in Google Scholar

eISSN:
1337-947X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Ökologie, andere, Chemie, Umweltchemie, Geowissenschaften, Geografie