Multivariate Regularized Newton and Levenberg-Marquardt methods: a comparison on synthetic data of tumor hypoxia in a kinetic framework
Online veröffentlicht: 11. Mai 2019
Seitenbereich: 47 - 53
Eingereicht: 20. Nov. 2016
Akzeptiert: 24. Juli 2017
DOI: https://doi.org/10.2478/caim-2019-0006
Schlüsselwörter
© 2019 Sara Garbarino et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
In this paper we propose a new algorithm to optimize the parameters of a compartmental problem describing tumor hypoxia. The method is based on a multivariate Newton approach, with Tikhonov regularization, and can be easily applied to data with diverse statistical distributions. Here we simulate [18