[
Anders C., Niewoehner O., Duerst A., Jinek M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513: 569–573.
]Search in Google Scholar
[
Axelsen T.M., Woldbye D.P. (2018). Gene therapy for Parkinson’s disease, an update. J. Parkinson’s Dis., 8: 195–215.
]Search in Google Scholar
[
Bengtsson N.E., Hall J.K., Odom G.L., Phelps M.P., Andrus C.R., Hawkins R.D., Hauschka S.D., Chamberlain J.R., Chamberlain J.S. (2017). Correction: Corrigendum: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun., 8: 16007.
]Search in Google Scholar
[
Bevacqua R.J., Fernandez-Martín R., Savy V., Canel N.G., Gismondi M.I., Kues W.A., Carlson D.F., Fahrenkrug S., Niemann H., Taboga O.A. (2016). Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86: 1886–1896.
]Search in Google Scholar
[
Bischoff N., Wimberger S., Maresca M., Brakebusch C. (2020). Improving precise CRISPR genome editing by small molecules: is there a magic potion? Cells, 9: 1318.10.3390/cells9051318729104932466303
]Search in Google Scholar
[
Blau N. (2016). Genetics of Phenylketonuria: Then and Now. Hum. Mutat., 37: 508–515.
]Search in Google Scholar
[
Buhidma Y., Rukavina K., Chaudhuri K.R., Duty S. (2020). Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease. NPJ Parkinson’s Dis., 6: 1–7.
]Search in Google Scholar
[
Cazzorla C., Bensi G., Biasucci G., Leuzzi V., Manti F., Musumeci A., Papadia F., Stoppioni V., Tummolo A., Vendemiale M., Polo G., Burlina A. (2018). Living with phenylketonuria in adulthood: The PKU ATTITUDE study. Mol. Genet. Metab., 16: 39–45.
]Search in Google Scholar
[
Chen Y., Dolt K.S., Kriek M., Baker T., Downey P., Drummond N.J., Canham M.A. Natalwala A., Rosser S., Kunath T. (2019). Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur. J. Neurosci., 49: 510–524.
]Search in Google Scholar
[
Cho H.-M., Lee K.-H., Shen Y.M., Shin T.J., Ryu P.D., Choi M.C., Kang K.-S., Cho J.Y. (2020). Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocardial infarction. Mol. Ther. Nucleic Acids, 19: 1186–1197.
]Search in Google Scholar
[
Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186: 757–761.
]Search in Google Scholar
[
Cobb R.E., Wang Y., Zhao H. (2015). High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol., 4: 723–728.
]Search in Google Scholar
[
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819–823.
]Search in Google Scholar
[
Cox D.B.T., Platt R.J., Zhang F. (2015). Therapeutic genome editing: prospects and challenges. Nat. Med., 21: 121–131.
]Search in Google Scholar
[
Crane A.M., Kramer P., Bui J.H., Chung W.J., Li X.S., Gonzalez-Garay M.L., Hawkins F., Liao W., Mora D., Choi S., Wang J., Sun H.C., Paschon D.E., Guschin D.Y., Gregory P.D., Kotton D.N., Holmes M.C., Sorscher E.J., Davis B.R. (2015). Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Rep., 4: 569–577.
]Search in Google Scholar
[
Defesche J.C., Gidding S.S., Harada-Shiba M., Hegele R.A., Santos R.D., Wierzbicki A.S. (2017). Familial hypercholesterolaemia. Nat. Rev. Dis. Primers, 3: 1–20.
]Search in Google Scholar
[
Fan Z., Perisse I.V., Cotton C.U., Regouski M., Meng Q., Domb C., Van Wettere A.J., Wang Z., Harris A., White K.L., Polejaeva I.A. (2018). A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 3.10.1172/jci.insight.123529623747630282831
]Search in Google Scholar
[
Firth A.L., Menon T., Parker G.S., Qualls S.J., Lewis B.M., Ke E., Dargitz C.T., Wright R., Khanna A., Gage F.H., Verma I.M. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep., 12: 1385–1390.
]Search in Google Scholar
[
Fu B., Liao J., Chen S., Li W., Wang Q., Hu J., Yang F., Hsiao S., Jiang Y., Wang L. (2022). CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat. Med., 28: 1573–1580.
]Search in Google Scholar
[
Gao Y., Wu H., Wang Y., Liu X., Chen L., Li Q., Cui C., Liu X., Zhang J., Zhang Y. (2017). Single Cas9 nickase in-duced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol., 18: 13.
]Search in Google Scholar
[
Geurts M.H., de Poel E., Amatngalim G.D., Oka R., Meijers F.M., Kruisselbrink E., van Mourik P., Berkers G., de Winter-de Groot K.M., Michel S. (2020). CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell, 26: 503–510.
]Search in Google Scholar
[
Gidding S.S., Allen N.B. (2019). Cholesterol and atherosclerotic cardiovascular disease: a lifelong problem. Am. Heart Assoc., 012924.10.1161/JAHA.119.012924658537531137996
]Search in Google Scholar
[
Grisch-Chan H.M., Schwank G., Harding C.O., Thöny B. (2019.) State-of-the-art 2019 on gene therapy for phenylketonuria. Hum. Gene Ther., 30: 1274–1283.10.1089/hum.2019.111676396531364419
]Search in Google Scholar
[
Han J.P., Kim M., Choi B.S., Lee J.H., Lee G.S., Jeong M., Lee Y., Kim E.A., Oh H.-K., Go N., (2022). In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv., 8: eabj6901.
]Search in Google Scholar
[
Hekselman I., Kerber L., Ziv M., Gruber G., Yeger-Lotem E. (2022). The Organ-Disease Annotations (ODiseA) Database of Hereditary Diseases and Inflicted Tissues. J. Mol. Biol., 167619.10.1016/j.jmb.2022.16761935504357
]Search in Google Scholar
[
Hinderer C., Katz N., Buza E.L., Dyer C., Goode T., Bell P., Richman L.K., Wilson J.M. (2018). Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Genet. Ther., 29: 285–298.
]Search in Google Scholar
[
Ikeda M., Matsuyama S., Akagi, S., Ohkoshi K., Nakamura S., Minabe S., Kimura K., Hosoe M. (2017). Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle. Sci. Rep., 7: 1–9.
]Search in Google Scholar
[
Irion U., Krauss J., Nüsslein-Volhard C. (2014). Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development, 141: 4827–4830.
]Search in Google Scholar
[
Jiang F., Doudna J.A. (2015). The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol., 30: 100–111.
]Search in Google Scholar
[
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337: 816-821.
]Search in Google Scholar
[
Karponi G., Kritas S.K., Papadopoulou G., Akrioti E.K., Papanikolaou E., Petridou E. (2019). Development of a CRISPR/Cas9 system against ruminant animal brucellosis. BMC Vet. Res., 15: 422.
]Search in Google Scholar
[
Khan K.N., Robson A., Mahroo O.A., Arno G., Inglehearn C.F., Armengol M., Waseem N., Holder G.E., Carss K.J., Raymond L.F. (2018). A clinical and molecular characterisation of CRB1-associated maculopathy. Eur. J. Hum. Genet., 26: 687–694.
]Search in Google Scholar
[
Khatibi S., Modaresi M., Kazemi O.R., Salehi M., Aghaee-Bakhtiari S.H. (2021). Genetic modification of cystic fibrosis with ΔF508 mutation of CFTR gene using the CRISPR system in peripheral blood mononuclear cells. Iran. J. Basic Med. Sci., 24: 73–78.
]Search in Google Scholar
[
Kizilay Mancini O., Huynh D.N., Menard L., Shum-Tim D., Ong H., Marleau S., Colmegna I., Servant M.J. (2021). Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc. Res., 117: 756–766.
]Search in Google Scholar
[
Koppes E.A., Redel B.K., Johnson M.A., Skvorak K.J., Ghaloul-Gonzalez L., Yates M.E., Lewis D.W., Gollin S.M., Wu Y.L., Christ S.E., Yerle M., Leshinski A., Spate L.D., Benne J.A., Murphy S.L., Samuel M.S., Walters E.M., Hansen S.A., Wells K.D., Lichter-Konecki U., Wagner R.A., Newsome J.T., Dobrowolski S.F., Vockley J., Prather R.S., Nicholls R.D. (2020). A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 5.10.1172/jci.insight.141523760553533055427
]Search in Google Scholar
[
Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533: 420–424.
]Search in Google Scholar
[
Kosicki M., Tomberg K., Bradley A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol., 36: 765–771.
]Search in Google Scholar
[
Lek A., Zhang Y., Woodman K.G., Huang S., DeSimone A.M., Cohen J., Ho V., Conner J., Mead L., Kodani A., Pakula A., Sanjana N., King O.D., Jones P.L., Wagner K.R., Lek M., Kunkel L.M. (2020). Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci Transl. Med., 12.10.1126/scitranslmed.aay0271730448032213627
]Search in Google Scholar
[
Li H., Wu S., Ma X., Li X., Cheng T., Chen Z., Wu J., Lv L., Li L., Xu L. (2021). Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci. Bull., 37: 1271–1288.
]Search in Google Scholar
[
Li J., Hong S., Chen W., Zuo E., Yang H. (2019). Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. J. Genet. Genomics, 46: 513–521.
]Search in Google Scholar
[
Li L., Yi H., Liu Z., Long P., Pan T., Huang Y., Li Y., Li Q., Ma Y. (2022). Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res. Ther., 13: 1–12.
]Search in Google Scholar
[
Lin X., Chen H., Lu Y.Q., Hong S., Hu X., Gao Y., Lai L.L., Li J.J., Wang Z., Ying W., Ma L., Wang N., Zuo E., Yang H., Chen W.J. (2020). Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Res., 30: 548–550.
]Search in Google Scholar
[
Liu Q., Wang C., Zheng Y., Zhao Y., Wang Y., Hao J., Zhao X., Yi K., Shi L., Kang C. (2020). Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 258: 120275.
]Search in Google Scholar
[
Liu Z., Wu T., Xiang G., Wang H., Wang B., Feng Z., Mu Y., Li K. (2022). Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing. Int. J. Mol. Sci., 23: 7331.
]Search in Google Scholar
[
Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 1: 1–26.
]Search in Google Scholar
[
Mata López S., Balog-Alvarez C., Vitha S., Bettis A.K., Canessa E.H., Kornegay J.N., Nghiem P.P. (2020). Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PloS One, 15: e0228072.
]Search in Google Scholar
[
Mallikarjunappa S., Shandilya U.K., Sharma A., Lamers K., Bissonnette N., Karrow N.A., Meade K.G. (2020). Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuber-culosis lysate using CRISPR/Cas9. BMC Genet., 21: 121.
]Search in Google Scholar
[
Molday R.S., Kellner U., Weber B.H. (2012). X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog. Retin. Eye Res., 31: 195–212.
]Search in Google Scholar
[
Morishige S., Mizuno S., Ozawa H., Nakamura T., Mazahery A., Nomura K., Seki R., Mouri F., Osaki K., Yamamura K. (2020). CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int. J. Hematol., 111: 225–233.
]Search in Google Scholar
[
Negre O., Eggimann A.V., Beuzard Y., Ribeil, J.A., Bourget P., Borwornpinyo S., Hongeng S., Hacein-Bey S., Cavazzana M., Leboulch P. (2016). Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA (T87Q)-globin gene. Hum. Gene Ther., 27: 148–165.
]Search in Google Scholar
[
O’Connor T.P., Crystal R.G. (2006). Genetic medicines: treatment strategies for hereditary disorders. Nat. Rev. Genet., 7: 261–276.
]Search in Google Scholar
[
Ousterout D.G., Kabadi A.M., Thakore P.I., Majoros W.H., Reddy T.E., Gersbach C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun., 6: 6244.
]Search in Google Scholar
[
Park C.Y., Kim D.H., Son J.S., Sung J.J., Lee J., Bae S., Kim J.H., Kim D.W., Kim J.S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem, 17: 213–220.
]Search in Google Scholar
[
Paulk N.K., Wursthorn K., Wang Z., Finegold M.J., Kay M.A., Grompe M. (2010). Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology (Baltimore, Md.), 51: 1200–1208.
]Search in Google Scholar
[
Richards D.Y., Winn S.R., Dudley S., Nygaard S., Mighell T.L., Grompe M., Harding C.O., 2020. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. Mol. Ther. Methods Clin. Dev., 17: 234–245.10.1016/j.omtm.2019.12.004696263731970201
]Search in Google Scholar
[
Rong L., Chen D., Huang X., Sun L. (2022). Delivery of Cas9-guided ABE8e into stem cells using poly (l-lysine) polypeptides for correction of the hemophilia-associated FIX missense mutation. Biochem. Biophys. Res. Commun., 628: 49–56.
]Search in Google Scholar
[
Rossidis A.C., Stratigis J.D., Chadwick A.C., Hartman H.A., Ahn N.J., Li H., Singh K., Coons B.E., Li L., Lv W., Zoltick P.W., Alapati D., Zacharias W., Jain R., Morrisey E.E., Musunuru K., Peranteau W.H. (2018). In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med., 24: 1513–1518.
]Search in Google Scholar
[
Schwank G., Koo B.K., Sasselli V., Dekkers J.F., Heo I., Demircan T., Sasaki N., Boymans S., Cuppen E., van der Ent C.K., Nieuwenhuis E.E., Beekman J.M., Clevers H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13: 653–658.
]Search in Google Scholar
[
Shah S.A., Erdmann S., Mojica F.J., Garrett R.A. (2013). Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol., 10: 891–899.
]Search in Google Scholar
[
Shao Y., Wang L., Guo N., Wang S., Yang L., Li Y., Wang M., Yin S., Han H., Zeng L., Zhang L., Hui L., Ding Q., Zhang J., Geng H., Liu M., Li D. (2018). Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J. Biol. Chem., 293: 6883–6892.
]Search in Google Scholar
[
Singh K., Cornell C.S., Jackson R., Kabiri M., Phipps M., Desai M. et al… (2021). CRISPR/Cas9 generated knockout mice lacking phenylalanine hydroxylase protein as a novel preclinical model for human phenylketonuria. Sci. Rep., 11: 7254.
]Search in Google Scholar
[
Sinn P.L., Anthony R.M., McCray P.B., Jr. (2011). Genetic therapies for cystic fibrosis lung disease. Hum. Mol. Genet., 20: 79–86.
]Search in Google Scholar
[
Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. (2022). Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J. Cyst. Fibros, 21: 181–187.
]Search in Google Scholar
[
Statkute E., Wang E.Y., Stanton R.J. (2022). An Optimized CRISPR/Cas9 Adenovirus Vector (AdZ-CRISPR) for High-Throughput Cloning of sgRNA, Using Enhanced sgRNA and Cas9 Variants. Hum. Gene Ther., 33: 990–1001.
]Search in Google Scholar
[
Son J.S., Park C.Y., Lee G., Park J.Y., Kim H.J., Kim G., Chi K.Y., Woo D.H., Han C., Kim S.K. (2022). Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs. Biomaterials, 283: 121429.
]Search in Google Scholar
[
Tantri A., Vrabec T.R., Cu-Unjieng A., Frost A., Annesley Jr, W.H., Donoso L.A. (2004). X-linked retinoschisis: a clinical and molecular genetic review. Surv. Ophthalmol., 49: 214–230.
]Search in Google Scholar
[
VanLith C., Guthman R., Nicolas C.T., Allen K., Du Z., Joo D.J., Nyberg S.L., Lillegard J.B., Hickey R.D. (2018). Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary tyrosinemia type 1. Hum. Gene Ther., 29: 1315–1326.
]Search in Google Scholar
[
Vicencio J., Sánchez-Bolaños C., Moreno-Sánchez I., Brena D., Vejnar C.E., Kukhtar, D. et al., (2022). Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nat. Commun., 13: 1–13.
]Search in Google Scholar
[
Wang X., Li J., Wang Y., Yang B., Wei J., Wu J., Wang R., Huang X., Chen J., Yang L. (2018). Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotech., 36: 946–949.
]Search in Google Scholar
[
Wei C., Liu J., Yu Z., Zhang B., Gao G., Jiao R. (2013). TALEN or Cas9–rapid, efficient and specific choices for genome modifications. J. Genet. Genom., 40: 281–289.
]Search in Google Scholar
[
Wei T., Cheng Q., Min Y.L., Olson E.N., Siegwart D.J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun., 11.10.1038/s41467-020-17029-3732015732591530
]Search in Google Scholar
[
Yang Y., Kang X., Hu S., Chen B., Xie Y., Song B., Zhang Q., Wu H., Ou Z., Xian Y. (2021). CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. J. Biol. Chem., 296.10.1016/j.jbc.2021.100464802497633639162
]Search in Google Scholar
[
Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M., Koteliansky V., Sharp P.A., Jacks T., Anderson D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32: 551–553.
]Search in Google Scholar
[
Yoon H.H., Ye S., Lim S., Jo A., Lee H., Hong F., Lee S.E., Oh S.J., Kim N.R., Kim K. (2022). CRISPR-Cas9 gene editing protects from the A53T-SNCA overexpression-induced pathology of Parkinson’s disease in vivo. CRISPR J., 5: 95–108.
]Search in Google Scholar
[
Yuan T., Zhong Y., Wang Y., Zhang T., Lu R., Zhou M., Lu Y., Yan K., Chen Y., Hu Z. (2019). Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids Health Dis., 18: 1–9.
]Search in Google Scholar
[
Zha Y., Lu Y., Zhang T., Yan K., Zhuang W., Liang J., Cheng Y., Wang Y. (2021). CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits. Lipids Health Dis., 20: 1–11.
]Search in Google Scholar
[
Zhang L., Wang L., Xie Y., Wang P., Deng S., Qin A., Zhang J., Yu X., Zheng W., Jiang X. (2019). Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angewandte Chemie (Int. ed. in English), 58: 12404–12408.
]Search in Google Scholar
[
Zhang Y., Li H., Nishiyama T., McAnally J.R., Sanchez-Ortiz E., Huang J., Mammen P.P.A., Bassel-Duby R., Olson E.N. (2022). A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing. Molecular therapy. Nucleic Acids, 29: 525–537.
]Search in Google Scholar
[
Zuo E., Sun Y., Wei W., Yuan T., Ying W., Sun H., Yuan L., Steinmetz L.M., Li Y., Yang H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 364: 289–292.
]Search in Google Scholar