Zitieren

Anders C., Niewoehner O., Duerst A., Jinek M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513: 569–573. Search in Google Scholar

Axelsen T.M., Woldbye D.P. (2018). Gene therapy for Parkinson’s disease, an update. J. Parkinson’s Dis., 8: 195–215. Search in Google Scholar

Bengtsson N.E., Hall J.K., Odom G.L., Phelps M.P., Andrus C.R., Hawkins R.D., Hauschka S.D., Chamberlain J.R., Chamberlain J.S. (2017). Corrigendum: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun., 8: 16007. Search in Google Scholar

Bevacqua R.J., Fernandez-Martín R., Savy V., Canel N.G., Gismondi M.I., Kues W.A., Carlson D.F., Fahrenkrug S., Niemann H., Taboga O.A. (2016). Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86: 1886–1896. Search in Google Scholar

Bischoff N., Wimberger S., Maresca M., Brakebusch C. (2020). Improving precise CRISPR genome editing by small molecules: is there a magic potion? Cells, 9: 1318. Search in Google Scholar

Blau N. (2016). Genetics of Phenylketonuria: Then and Now. Hum. Mutat., 37: 508–515. Search in Google Scholar

Buhidma Y., Rukavina K., Chaudhuri K.R., Duty S. (2020). Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease. NPJ Parkinson’s Dis., 6: 1–7. Search in Google Scholar

Cazzorla C., Bensi G., Biasucci G., Leuzzi V., Manti F., Musumeci A., Papadia F., Stoppioni V., Tummolo A., Vendemiale M., Polo G., Burlina A. (2018). Living with phenylketonuria in adulthood: the PKU ATTITUDE study. Mol. Genet. Metab., 16: 39–45. Search in Google Scholar

Chen Y., Dolt K.S., Kriek M., Baker T., Downey P., Drummond N.J., Canham M.A. Natalwala A., Rosser S., Kunath T. (2019). Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur. J. Neurosci., 49: 510–524. Search in Google Scholar

Cho H.-M., Lee K.-H., Shen Y.M., Shin T.J., Ryu P.D., Choi M.C., Kang K.-S., Cho J.Y. (2020). Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocar-dial infarction. Mol. Ther. Nucleic Acids, 19: 1186–1197. Search in Google Scholar

Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186: 757–761. Search in Google Scholar

Cobb R.E., Wang Y., Zhao H. (2015). High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol., 4: 723–728. Search in Google Scholar

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819–823. Search in Google Scholar

Cox D.B.T., Platt R.J., Zhang F. (2015). Therapeutic genome editing: prospects and challenges. Nat. Med., 21: 121–131. Search in Google Scholar

Crane A.M., Kramer P., Bui J.H., Chung W.J., Li X.S., Gonzalez-Garay M.L., Hawkins F., Liao W., Mora D., Choi S., Wang J., Sun H.C., Paschon D.E., Guschin D.Y., Gregory P.D., Kotton D.N., Holmes M.C., Sorscher E.J., Davis B.R. (2015). Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Rep., 4: 569–577. Search in Google Scholar

Defesche J.C., Gidding S.S., Harada-Shiba M., Hegele R.A., Santos R.D., Wierzbicki A.S. (2017). Familial hypercholesterolaemia. Nat. Rev. Dis. Primers, 3: 1–20. Search in Google Scholar

Fan Z., Perisse I.V., Cotton C.U., Regouski M., Meng Q., Domb C., Van Wettere A.J., Wang Z., Harris A., White K.L., Polejaeva I.A. (2018). A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight, 3. Search in Google Scholar

Firth A.L., Menon T., Parker G.S., Qualls S.J., Lewis B.M., Ke E., Dargitz C.T., Wright R., Khanna A., Gage F.H., Verma I.M. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep., 12: 1385–1390. Search in Google Scholar

Fu B., Liao J., Chen S., Li W., Wang Q., Hu J., Yang F., Hsiao S., Jiang Y., Wang L. (2022). CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat. Med., 28: 1573–1580. Search in Google Scholar

Gao Y., Wu H., Wang Y., Liu X., Chen L., Li Q., Cui C., Liu X., Zhang J., Zhang Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol., 18: 13. Search in Google Scholar

Geurts M.H., de Poel E., Amatngalim G.D., Oka R., Meijers F.M., Kruisselbrink E., van Mourik P., Berkers G., de Winter-de Groot K.M., Michel S. (2020). CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell, 26: 503–510. Search in Google Scholar

Gidding S.S., Allen N.B. (2019). Cholesterol and atherosclerotic cardiovascular disease: a lifelong problem. Am. Heart Assoc., 012924. Search in Google Scholar

Grisch-Chan H.M., Schwank G., Harding C.O., Thöny B. (2019.) State-of-the-art 2019 on gene therapy for phenylketonuria. Hum. Gene Ther., 30: 1274–1283. Search in Google Scholar

Han J.P., Kim M., Choi B.S., Lee J.H., Lee G.S., Jeong M., Lee Y., Kim E.A., Oh H.-K., Go N., (2022). In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv., 8: eabj6901. Search in Google Scholar

Hekselman I., Kerber L., Ziv M., Gruber G., Yeger-Lotem E. (2022). The organ-disease annotations (ODiseA) database of hereditary diseases and inflicted tissues. J. Mol. Biol., 167619. Search in Google Scholar

Hinderer C., Katz N., Buza E.L., Dyer C., Goode T., Bell P., Richman L.K., Wilson J.M. (2018). Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Genet. Ther., 29: 285–298. Search in Google Scholar

Ikeda M., Matsuyama S., Akagi, S., Ohkoshi K., Nakamura S., Minabe S., Kimura K., Hosoe M. (2017). Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle. Sci. Rep., 7: 1–9. Search in Google Scholar

Irion U., Krauss J., Nüsslein-Volhard C. (2014). Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development, 141: 4827–4830. Search in Google Scholar

Jiang F., Doudna J.A. (2015). The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol., 30: 100–111. Search in Google Scholar

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpen-tier E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337: 816-821. Search in Google Scholar

Karponi G., Kritas S.K., Papadopoulou G., Akrioti E.K., Papanikolaou E., Petridou E. (2019). Development of a CRISPR/Cas9 system against ruminant animal brucellosis. BMC Vet. Res., 15: 422 Search in Google Scholar

Khan K.N., Robson A., Mahroo O.A., Arno G., Inglehearn C.F., Armengol M., Waseem N., Holder G.E., Carss K.J., Raymond L.F. (2018). A clinical and molecular characterisation of CRB1-associated maculopathy. Eur. J. Hum. Genet., 26: 687–694. Search in Google Scholar

Khatibi S., Modaresi M., Kazemi O.R., Salehi M., Aghaee-Bakhtiari S.H. (2021). Genetic modification of cystic fibrosis with ΔF508 mutation of CFTR gene using the CRISPR system in peripheral blood mononuclear cells. Iran. J. Basic Med. Sci., 24: 73–78. Search in Google Scholar

Kizilay Mancini O., Huynh D.N., Menard L., Shum-Tim D., Ong H., Marleau S., Colmegna I., Servant M.J. (2021). Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc. Res., 117: 756–766. Search in Google Scholar

Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533: 420–424. Search in Google Scholar

Koppes E.A., Redel B.K., Johnson M.A., Skvorak K.J., Ghaloul-Gonzalez L., Yates M.E., Lewis D.W., Gollin S.M., Wu Y.L., Christ S.E., Yerle M., Leshinski A., Spate L.D., Benne J.A., Murphy S.L., Samuel M.S., Walters E.M., Hansen S.A., Wells K.D., Lichter-Konecki U., Wagner R.A., Newsome J.T., Dobrowolski S.F., Vockley J., Prather R.S., Nicholls R.D. (2020). A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 5. Search in Google Scholar

Kosicki M., Tomberg K., Bradley A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol., 36: 765–771. Search in Google Scholar

Lek A., Zhang Y., Woodman K.G., Huang S., DeSimone A.M., Cohen J., Ho V., Conner J., Mead L., Kodani A., Pakula A., Sanjana N., King O.D., Jones P.L., Wagner K.R., Lek M., Kunkel L.M. (2020). Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci Transl. Med., 12. Search in Google Scholar

Li H., Wu S., Ma X., Li X., Cheng T., Chen Z., Wu J., Lv L., Li L., Xu L. (2021). Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci. Bull., 37: 1271–1288. Search in Google Scholar

Li J., Hong S., Chen W., Zuo E., Yang H. (2019). Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. J. Genet. Genomics, 46: 513–521. Search in Google Scholar

Li L., Yi H., Liu Z., Long P., Pan T., Huang Y., Li Y., Li Q., Ma Y. (2022). Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res. Ther., 13: 1–12. Search in Google Scholar

Lin X., Chen H., Lu Y.Q., Hong S., Hu X., Gao Y., Lai L.L., Li J.J., Wang Z., Ying W., Ma L., Wang N., Zuo E., Yang H., Chen W.J. (2020). Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Res., 30: 548–550. Search in Google Scholar

Liu Q., Wang C., Zheng Y., Zhao Y., Wang Y., Hao J., Zhao X., Yi K., Shi L., Kang C. (2020). Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 258: 120275. Search in Google Scholar

Liu Z., Wu T., Xiang G., Wang H., Wang B., Feng Z., Mu Y., Li K. (2022). Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. Int. J. Mol. Sci., 23: 7331. Search in Google Scholar

Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 1: 1–26. Search in Google Scholar

Mallikarjunappa S., Shandilya U.K., Sharma A., Lamers K., Bissonnette N., Karrow N.A., Meade K.G. (2020). Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9. BMC Genet., 21: 121. Search in Google Scholar

Mata López S., Balog-Alvarez C., Vitha S., Bettis A.K., Canessa E.H., Kornegay J.N., Nghiem P.P. (2020). Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PloS One, 15: e0228072. Search in Google Scholar

Molday R.S., Kellner U., Weber B.H. (2012). X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog. Retin. Eye Res., 31: 195–212. Search in Google Scholar

Morishige S., Mizuno S., Ozawa H., Nakamura T., Mazahery A., Nomura K., Seki R., Mouri F., Osaki K., Yamamura K. (2020). CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int. J. Hematol., 111: 225–233. Search in Google Scholar

Negre O., Eggimann A.V., Beuzard Y., Ribeil, J.A., Bourget P., Borwornpinyo S., Hongeng S., Hacein-Bey S., Cavazzana M., Leboulch P. (2016). Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA (T87Q)-globin gene. Hum. Gene Ther., 27: 148–165. Search in Google Scholar

O’Connor T.P., Crystal R.G. (2006). Genetic medicines: treatment strategies for hereditary disorders. Nat. Rev. Genet., 7: 261–276. Search in Google Scholar

Ousterout D.G., Kabadi A.M., Thakore P.I., Majoros W.H., Reddy T.E., Gersbach C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun., 6: 6244. Search in Google Scholar

Park C.Y., Kim D.H., Son J.S., Sung J.J., Lee J., Bae S., Kim J.H., Kim D.W., Kim J.S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem, 17: 213–220. Search in Google Scholar

Paulk N.K., Wursthorn K., Wang Z., Finegold M.J., Kay M.A., Grompe M. (2010). Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology (Baltimore, Md.), 51: 1200–1208. Search in Google Scholar

Richards D.Y., Winn S.R., Dudley S., Nygaard S., Mighell T.L., Grompe M., Harding C.O., (2020). AAV-mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev., 17: 234–245. Search in Google Scholar

Rong L., Chen D., Huang X., Sun L. (2022). Delivery of Cas9-guided ABE8e into stem cells using poly (l-lysine) polypeptides for correction of the hemophilia-associated FIX missense mutation. Biochem. Biophys. Res. Commun., 628: 49–56. Search in Google Scholar

Rossidis A.C., Stratigis J.D., Chadwick A.C., Hartman H.A., Ahn N.J., Li H., Singh K., Coons B.E., Li L., Lv W., Zoltick P.W., Alapati D., Zacharias W., Jain R., Morrisey E.E., Musunuru K., Peranteau W.H. (2018). In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med., 24: 1513–1518. Search in Google Scholar

Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. (2022). Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J. Cyst. Fibros, 21: 181–187. Search in Google Scholar

Schwank G., Koo B.K., Sasselli V., Dekkers J.F., Heo I., Demircan T., Sasaki N., Boymans S., Cuppen E., van der Ent C.K., Nieuwenhuis E.E., Beekman J.M., Clevers H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13: 653–658. Search in Google Scholar

Shah S.A., Erdmann S., Mojica F.J., Garrett R.A. (2013). Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol., 10: 891–899. Search in Google Scholar

Shao Y., Wang L., Guo N., Wang S., Yang L., Li Y., Wang M., Yin S., Han H., Zeng L., Zhang L., Hui L., Ding Q., Zhang J., Geng H., Liu M., Li D. (2018). Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J. Biol. Chem., 293: 6883–6892. Search in Google Scholar

Singh K., Cornell C.S., Jackson R., Kabiri M., Phipps M., Desai M., et al. (2021). CRISPR/Cas9 generated knockout mice lacking phenylalanine hydroxylase protein as a novel preclinical model for human phenylketonuria. Sci. Rep., 11: 7254. Search in Google Scholar

Sinn P.L., Anthony R.M., McCray P.B. Jr. (2011). Genetic therapies for cystic fibrosis lung disease. Hum. Mol. Genet., 20: 79–86. Search in Google Scholar

Son J.S., Park C.Y., Lee G., Park J.Y., Kim H.J., Kim G., Chi K.Y., Woo D.H., Han C., Kim S.K. (2022). Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs. Biomaterials, 283: 121429. Search in Google Scholar

Song Y., Sohl-Dickstein J., Kingma D.P., Kumar A., Ermon S., Poole B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint, arXiv:2011.13456. Search in Google Scholar

Statkute E., Wang E.Y., Stanton R.J. (2022). An optimized CRISPR/Cas9 adenovirus vector (AdZ-CRISPR) for high-throughput cloning of sgRNA, using enhanced sgRNA and Cas9 variants. Hum. Gene Ther., 33: 990–1001. Search in Google Scholar

Tantri A., Vrabec T.R., Cu-Unjieng A., Frost A., Annesley Jr, W.H., Donoso L.A. (2004). X-linked retinoschisis: a clinical and molecular genetic review. Surv. Ophthalmol., 49: 214–230. Search in Google Scholar

VanLith C., Guthman R., Nicolas C.T., Allen K., Du Z., Joo D.J., Nyberg S.L., Lillegard J.B., Hickey R.D. (2018). Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary tyrosinemia type 1. Hum. Gene Ther., 29: 1315–1326. Search in Google Scholar

Vicencio J., Sánchez-Bolaños C., Moreno-Sánchez I., Brena D., Vejnar C.E., Kukhtar, D. et al., (2022). Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nat. Commun., 13: 1–13. Search in Google Scholar

Wang X., Li J., Wang Y., Yang B., Wei J., Wu J., Wang R., Huang X., Chen J., Yang L. (2018). Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotech., 36: 946–949. Search in Google Scholar

Wei C., Liu J., Yu Z., Zhang B., Gao G., Jiao R. (2013). TALEN or Cas9 – rapid, efficient and specific choices for genome modifications. J. Genet. Genom., 40: 281–289. Search in Google Scholar

Wei T., Cheng Q., Min Y.L., Olson E.N., Siegwart D.J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun., 11. Search in Google Scholar

Yang Y., Kang X., Hu S., Chen B., Xie Y., Song B., Zhang Q., Wu H., Ou Z., Xian Y. (2021). CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. J. Biol. Chem., 296. Search in Google Scholar

Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M., Koteliansky V., Sharp P.A., Jacks T., Anderson D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32: 551–553. Search in Google Scholar

Yoon H.H., Ye S., Lim S., Jo A., Lee H., Hong F., Lee S.E., Oh S.J., Kim N.R., Kim K. (2022). CRISPR-Cas9 gene editing protects from the A53T-SNCA overexpression-induced pathology of Parkinson’s disease in vivo. CRISPR J., 5: 95–108. Search in Google Scholar

Yuan T., Zhong Y., Wang Y., Zhang T., Lu R., Zhou M., Lu Y., Yan K., Chen Y., Hu Z. (2019). Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids Health Dis., 18: 1–9. Search in Google Scholar

Zha Y., Lu Y., Zhang T., Yan K., Zhuang W., Liang J., Cheng Y., Wang Y. (2021). CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits. Lipids Health Dis., 20: 1–11. Search in Google Scholar

Zhang L., Wang L., Xie Y., Wang P., Deng S., Qin A., Zhang J., Yu X., Zheng W., Jiang X. (2019). Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angewandte Chemie Int. Ed., 58: 12404–12408. Search in Google Scholar

Zhang Y., Li H., Nishiyama T., McAnally J.R., Sanchez-Ortiz E., Huang J., Mammen P.P.A., Bassel-Duby R., Olson E.N. (2022). A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing. Molecular therapy. Nucleic Acids, 29: 525–537. Search in Google Scholar

Zuo E., Sun Y., Wei W., Yuan T., Ying W., Sun H., Yuan L., Steinmetz L.M., Li Y., Yang H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 364: 289–292. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin