[1. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al-Sanosi and F. Islam, Cathinone, an active principle of Catha edulis accelerates oxidative stress in limbic area of Swiss albino mice, J. Ethnopharmacol. 156 (2014) 102-106; https://doi.org/10.1016/j.jep.2014.08.00410.1016/j.jep.2014.08.004]Search in Google Scholar
[2. N. T. Wabe and M. A. Mohammed, What science says about khat (Catha edulis Forsk)? Overview of chemistry, toxicology and pharmacology, J. Exp. Integr. Med. 2 (2012) 29-37; https://doi.org/10.5455/jeim.221211.rw.00510.5455/jeim.221211.rw.005]Search in Google Scholar
[3. S. Qureshi, M.Tariq, F. S. El-Feraly and I. A. Elal-Meshal, Genetic effects of chronic treatment with cathinone in mice, Mutagenesis 3 (1988) 481-483; https://doi.org/10.1093/mutage/3.6.48110.1093/mutage/3.6.481]Search in Google Scholar
[4. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al- Sanosi and F. Islam, Toxic effect of cathinone (an active principle of Catha edulis) on brain lipids in Swiss albino mice, Environ. Conserv. J. 15 (2014) 5-11.10.36953/ECJ.2014.151202]Search in Google Scholar
[5. J. D. Connor, A. Rampes and E. Makonnen, Comparison of effects of khat extract and amphetamine on motor behaviors in mice, J. Ethnopharmacol. 81 (2002) 65-71; https://doi.org/10.1016/S0378-8741(02)00035-110.1016/S0378-8741(02)00035-1]Search in Google Scholar
[6. S. K. Kulkarni, Handbook of Experimental Pharmacology, 3rd ed., Vallabh Prakashan, New Delhi 2010, pp. 117-119.]Search in Google Scholar
[7. M. A. Kelly, M. Rubinstein, T. J. Phillips, C. N. Lessov, S. Burkhart-Kasch, G. Zhang, J. R. Bunzow, Y. Fang, G. A. Gerhardt, D. K. Grandy and M. J. Low, Locomotor activity in D2 dopamine receptor- deficient mice is determined by gene dosage, genetic background and developmental adaptations, J. Neurosci. 18 (1998) 3470-3479; https://doi.org/10.1523/JNEUROSCI.18-09-03470.199810.1523/JNEUROSCI.18-09-03470.1998]Search in Google Scholar
[8. D. V. Garg, V. J. Dhar, A. Sharma and R. Dutt, Experimental model for antianxiety activity. A review, Pharmacol. Online 1 (2011) 394-404.]Search in Google Scholar
[9. P. M. Moran, L. S. Higgins, B. Cordell and P. C. Moser, Age-related learning deficits in transgenic mice expressing the 721-amino acid isoform of human beta-amyloid precursor protein, Proc. Nat.Acad. Sci. USA (PNAS) 92 (1995) 5341-5345.10.1073/pnas.92.12.5341416907777509]Search in Google Scholar
[10. K. S. Zafar, A. Siddiqui, I. Sayeed, M. Ahmad, S. Salim and F. Islam, Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences, J. Neurochem. 84 (2003) 438-446; https://doi.org/10.1046/j.1471-4159.2003.01531.x10.1046/j.1471-4159.2003.01531.x12558963]Search in Google Scholar
[11. P. Kalix and O. Braenden, Pharmacological aspects of the chewing of khat leaves, Pharmacol. Rev.37 (1985) 149-164.]Search in Google Scholar
[12. M. Al-Mamary, M. Al-Habori, A. M. Al-Aghbari and M. M. Baker, Investigation into the toxicological effects of Catha edulis leaves: a short term study in animals, Phytother. Res. 16 (2002) 127-132;https://doi.org/10.1002/ptr.83510.1002/ptr.83511933113]Search in Google Scholar
[13. J. A. Marusich, K. R. Grant, B. E. Blough and J. L. Wiley, Effects of synthetic cathinones contained in ‘‘bath salts’’ on motor behavior and a functional observational battery in mice, Neurotoxicology 33 (2012) 1305-1313; https://doi.org/10.1016/j.neuro.2012.08.00310.1016/j.neuro.2012.08.003347517822922498]Search in Google Scholar
[14. G. C. Wagner, K. Prestone, G. A. Ricaurte, C. R. Schuster and L. S. Sieden, Neurochemical similarities between d,l-cathinone and d-amphetamine, Drug Alcohol Depend. 9 (1982) 279-284; https://doi.org/10.1016/0376-8716(82)90067-910.1016/0376-8716(82)90067-9]Search in Google Scholar
[15. N. D. Volkow, J. S. Fowler, G. J. Wang, J. M. Swanson and F. Telang. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications, Arch. Neurol. 64 (2007) 1575-1579.]Search in Google Scholar
[16. J. Nielsen, Cathinone affects dopamine and 5-hydroxytryptamine neurons in vivo as measured by changes in metabolites and synthesis in four forebrain regions in the rat, Neuropharmacology 24 (1985) 845-852; https://doi.org/10.1016/0028-3908(85)90035-810.1016/0028-3908(85)90035-8]Search in Google Scholar
[17. S. C. Daubner, T. Le and S. Wang, Tyrosine hydroxylase and regulation of dopamine synthesis, Arch. Biochem. Biophys. 508 (2011) 1-12; https://doi.org/10.1016/j.abb.2010.12.01710.1016/j.abb.2010.12.017306539321176768]Search in Google Scholar