1. bookVolume 68 (2018): Edizione 4 (December 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Catha Edulis Active Principle, Cathinone, Suppresses Motor Coordination, Accelerates Anxiety and Alters the Levels of Dopamine and its Metabolites in the Limbic Areas of Male Swiss Albino Mice

Pubblicato online: 03 Oct 2018
Volume & Edizione: Volume 68 (2018) - Edizione 4 (December 2018)
Pagine: 485 - 495
Ricevuto: 24 Sep 2018
Accettato: 21 Jun 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al-Sanosi and F. Islam, Cathinone, an active principle of Catha edulis accelerates oxidative stress in limbic area of Swiss albino mice, J. Ethnopharmacol. 156 (2014) 102-106; https://doi.org/10.1016/j.jep.2014.08.00410.1016/j.jep.2014.08.004Search in Google Scholar

2. N. T. Wabe and M. A. Mohammed, What science says about khat (Catha edulis Forsk)? Overview of chemistry, toxicology and pharmacology, J. Exp. Integr. Med. 2 (2012) 29-37; https://doi.org/10.5455/jeim.221211.rw.00510.5455/jeim.221211.rw.005Search in Google Scholar

3. S. Qureshi, M.Tariq, F. S. El-Feraly and I. A. Elal-Meshal, Genetic effects of chronic treatment with cathinone in mice, Mutagenesis 3 (1988) 481-483; https://doi.org/10.1093/mutage/3.6.48110.1093/mutage/3.6.481Search in Google Scholar

4. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al- Sanosi and F. Islam, Toxic effect of cathinone (an active principle of Catha edulis) on brain lipids in Swiss albino mice, Environ. Conserv. J. 15 (2014) 5-11.10.36953/ECJ.2014.151202Search in Google Scholar

5. J. D. Connor, A. Rampes and E. Makonnen, Comparison of effects of khat extract and amphetamine on motor behaviors in mice, J. Ethnopharmacol. 81 (2002) 65-71; https://doi.org/10.1016/S0378-8741(02)00035-110.1016/S0378-8741(02)00035-1Search in Google Scholar

6. S. K. Kulkarni, Handbook of Experimental Pharmacology, 3rd ed., Vallabh Prakashan, New Delhi 2010, pp. 117-119.Search in Google Scholar

7. M. A. Kelly, M. Rubinstein, T. J. Phillips, C. N. Lessov, S. Burkhart-Kasch, G. Zhang, J. R. Bunzow, Y. Fang, G. A. Gerhardt, D. K. Grandy and M. J. Low, Locomotor activity in D2 dopamine receptor- deficient mice is determined by gene dosage, genetic background and developmental adaptations, J. Neurosci. 18 (1998) 3470-3479; https://doi.org/10.1523/JNEUROSCI.18-09-03470.199810.1523/JNEUROSCI.18-09-03470.1998Search in Google Scholar

8. D. V. Garg, V. J. Dhar, A. Sharma and R. Dutt, Experimental model for antianxiety activity. A review, Pharmacol. Online 1 (2011) 394-404.Search in Google Scholar

9. P. M. Moran, L. S. Higgins, B. Cordell and P. C. Moser, Age-related learning deficits in transgenic mice expressing the 721-amino acid isoform of human beta-amyloid precursor protein, Proc. Nat.Acad. Sci. USA (PNAS) 92 (1995) 5341-5345.10.1073/pnas.92.12.5341416907777509Search in Google Scholar

10. K. S. Zafar, A. Siddiqui, I. Sayeed, M. Ahmad, S. Salim and F. Islam, Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences, J. Neurochem. 84 (2003) 438-446; https://doi.org/10.1046/j.1471-4159.2003.01531.x10.1046/j.1471-4159.2003.01531.x12558963Search in Google Scholar

11. P. Kalix and O. Braenden, Pharmacological aspects of the chewing of khat leaves, Pharmacol. Rev.37 (1985) 149-164.Search in Google Scholar

12. M. Al-Mamary, M. Al-Habori, A. M. Al-Aghbari and M. M. Baker, Investigation into the toxicological effects of Catha edulis leaves: a short term study in animals, Phytother. Res. 16 (2002) 127-132;https://doi.org/10.1002/ptr.83510.1002/ptr.83511933113Search in Google Scholar

13. J. A. Marusich, K. R. Grant, B. E. Blough and J. L. Wiley, Effects of synthetic cathinones contained in ‘‘bath salts’’ on motor behavior and a functional observational battery in mice, Neurotoxicology 33 (2012) 1305-1313; https://doi.org/10.1016/j.neuro.2012.08.00310.1016/j.neuro.2012.08.003347517822922498Search in Google Scholar

14. G. C. Wagner, K. Prestone, G. A. Ricaurte, C. R. Schuster and L. S. Sieden, Neurochemical similarities between d,l-cathinone and d-amphetamine, Drug Alcohol Depend. 9 (1982) 279-284; https://doi.org/10.1016/0376-8716(82)90067-910.1016/0376-8716(82)90067-9Search in Google Scholar

15. N. D. Volkow, J. S. Fowler, G. J. Wang, J. M. Swanson and F. Telang. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications, Arch. Neurol. 64 (2007) 1575-1579.Search in Google Scholar

16. J. Nielsen, Cathinone affects dopamine and 5-hydroxytryptamine neurons in vivo as measured by changes in metabolites and synthesis in four forebrain regions in the rat, Neuropharmacology 24 (1985) 845-852; https://doi.org/10.1016/0028-3908(85)90035-810.1016/0028-3908(85)90035-8Search in Google Scholar

17. S. C. Daubner, T. Le and S. Wang, Tyrosine hydroxylase and regulation of dopamine synthesis, Arch. Biochem. Biophys. 508 (2011) 1-12; https://doi.org/10.1016/j.abb.2010.12.01710.1016/j.abb.2010.12.017306539321176768Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo