Uneingeschränkter Zugang

Impact of lanthanum doped zirconium oxide (LaZrO2) gate dielectric material on FinFET inverter


Zitieren

Figure 1:

Bird eye view of SOI n-FinFET: (A) 3D structure of SOI n-FinFET, (B) Side view of device having composite high-k gate dielectric, (C) Layout of n-FINFET device. 
Bird eye view of SOI n-FinFET: (A) 3D structure of SOI n-FinFET, (B) Side view of device having composite high-k gate dielectric, (C) Layout of n-FINFET device. 

Figure 2:

Id-Vg characteristics of FINFET with reference (de Andrade et al., 2011) and simulation.
Id-Vg characteristics of FINFET with reference (de Andrade et al., 2011) and simulation.

Figure 3:

Variation of electrostatic surface potential along the channel length for k = 40, high-k gate dielectric constant.
Variation of electrostatic surface potential along the channel length for k = 40, high-k gate dielectric constant.

Figure 4:

Flowchart of the simulation procedure involved in visual TCAD.
Flowchart of the simulation procedure involved in visual TCAD.

Figure 5:

Transfer characteristics of n-FinFET in log and linear scale for Lg = 14 nm, Vg = 0 to 0.75 V and Vd = 0.75 V.
Transfer characteristics of n-FinFET in log and linear scale for Lg = 14 nm, Vg = 0 to 0.75 V and Vd = 0.75 V.

Figure 6:

Simulated transfer characteristic of n-FinFET and p-FinFET devices.
Simulated transfer characteristic of n-FinFET and p-FinFET devices.

Figure 7:

Output characteristics of n-FinFET and p-FinFET devices for same dimensions: Lg = 14 nm, HFIN = 24 nm, WFIN = 8 nm, Tox = 1.1 nm, WF (N) = 4.6 eV, and k = 40.
Output characteristics of n-FinFET and p-FinFET devices for same dimensions: Lg = 14 nm, HFIN = 24 nm, WFIN = 8 nm, Tox = 1.1 nm, WF (N) = 4.6 eV, and k = 40.

Figure 8:

Schematic layout of optimized FinFET-based inverter circuit with dimensions (HFin = 24 nm, Tox = 1.1 nm, k = 40 and WF = 4.6 eV).
Schematic layout of optimized FinFET-based inverter circuit with dimensions (HFin = 24 nm, Tox = 1.1 nm, k = 40 and WF = 4.6 eV).

Figure 9:

Butterfly curve for proposed FinFET-based inverter (n-FinFET and p-FinFET of equal size) at 0.8 and 0.4 V supply voltage.
Butterfly curve for proposed FinFET-based inverter (n-FinFET and p-FinFET of equal size) at 0.8 and 0.4 V supply voltage.

Impacts of gate dielectric SiO2 and LaZrO2 on the performance of n-FinFET device.

Simulated n-FinFET
Parameters (Vd = 0.75 V, Vg = 0.75 V) Gate dielectric (LaZrO2) k = 40 Gate dielectric (SiO2) k = 3.9
ION (A) 4.95 × 10−5 1.78 × 10−5
IOFF(A) 3.61 × 10−14 5.02E × 10−13
ION/IOFF 1.37 × 109 3.50 × 107
Vt (V) 0.253 0.207
SS(mV/dec) 60.3 67.02
DIBL(mV/V) 10.1 43
gm (S) (at Vg = 50 mV) 2.42 × 10−4 2.69 × 10−5
VEA (V) (at Vg = 50 mV) 10.7 0.88
TGF (V−1) (at Vg = 50 mV) 24.55 23.2266
gd (S) (at Vg = 50 mV) 1.8 × 10−15 1.95 × 10−12
AV (dB) (at Vg = 50 mV) 183 139.7

Performance analysis of FinFET devices.

n-FinFET p-FinFET
Metrics Lin (Vd = 50 mV) Sat (Vd = 0.75 V) Lin (Vd = 50 mV) Sat (Vd = 0.75 V)
ION (A) 1.37 × 10−5 4.95 × 10−5 1.81 × 10−5 4.54 × 10−5
IOFF(A) 2.64 × 10−14 3.61 × 10−14 2.69 × 10−14 3.98 × 10−14
ION/IOFF 0.51 × 109 1.37 × 109 0.67 × 109 1.14 × 109
SS (mV/dec) 59.9 60.3 59.9 60.9
Vt (V) 0.261 0.253 0.262 0.253
gm (S) 5.88 × 10−5 2.42 × 10−4 4.71 × 10−5 2.33 × 10−4
TGF (V−1) 24.68 24.55 24.65 24.37
DIBL (mV/V) 10.1 12.3

Important TCAD device parameters for an inverter design.

Process parameters Value
Design rule unit lambda (µm) 0.007
Thickness of substrate region (µm) 0.03
Height of fin (µm) 0.024
Thickness of gate oxide (µm) 0.0011
S/D doping concentration (donor) for nMOS (cm-3) 3E20
S/D doping concentration (acceptor) for pMOS (cm−3) 3E20
Supply voltage, Vd (V) 0.8 V
Thickness of buried oxide (µm) 0.02
Thickness of poly-silicon gate (µm) 0.002
Thickness of ILD dielectric (µm) 0.008
Thickness of ILD Metal 1(µm) 0.008
Lateral characteristic length of S/D doping of nMOS (µm) 0.004
Vertical characteristic length of S/D doping of nMOS (µm) 0.003
Doping concentration in p-type substrate (cm−3) 1E16
Doping concentration in body (cm−3) 1E17

Impact on noise margin due to temperature and voltage variation for simulated inverter circuit

Temperature (kelvin) Voltage (volts)
Gate dielectric permittivity value(k) 273 K 300 K 398 K 0.4 V 0.8 V 1.2 V
NMH (V) NML (V) NMH (V) NML (V) NMH (V) NML (V) NMH (V) NML (V) NMH (V) NML (V) NMH (V) NML (V)
40(LaZrO2) 0.4 0.377 0.375 0.375 0.35 0.35 0.195 0.12 0.375 0.375 0.55 0.55

Structural parameters used in simulation *As per ITRS dimensions (Wikipedia 14nm process, 2020).

Simulation work
Device’s performance parameters (n-FinFET) (p-FinFET)
Gate length, Lg (nm) 14 14
Transistor fin pitch (nm) 42 42
Transistor fin width, WFin (nm) 8 8
Transistor fin height, HFin (nm) 24 24
Workfunction, WF (eV) 4.6 4.6
Gate dielectric permittivity, k 40 40
Physical oxide thickness (nm) 1.1 1.1
Supply voltage, Vd (volts) 0.75 0.75
eISSN:
1178-5608
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere