Uneingeschränkter Zugang

57Fe Mössbauer spectroscopy investigations of iron phase composition in fluidized beds from the ELCHO power plant in Chorzów, Poland


Zitieren

1. Stout, W., Daily, M., Nickeson, T., Svendsen, R., & Thompson, G. (1997). Agricultural uses of alkaline fluidized bed combustion ash: case studies. Fuel, 76, 767-769.10.1016/S0016-2361(97)00001-XSearch in Google Scholar

2. Armesto, L., Bahillo, A., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in bubbling fl uidized bed. Biomass Bioenerg., 23, 171-176.10.1016/S0961-9534(02)00046-6Search in Google Scholar

3. Glinicki, M., & Zielinski, M. (2008). Air void system in concrete containing circulating fl uidized bed combustion fl y ash. Mater. Struct., 41, 681-687.10.1617/s11527-007-9273-6Search in Google Scholar

4. Shon, Ch. S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumow, G. C. (2010). Potential use of stockpiled circulating fl uidized bed combustion ashes in controlled low strength material (CLSM) mixture. Constr. Build. Mater., 24, 839-847.10.1016/j.conbuildmat.2009.10.022Search in Google Scholar

5. Koukouzas, N., Hãmãlãinen, J. Papanikolaou, A., Tourunen, T., & Jãntii, T. (2007). Mineralogical and elemental composition of fl y ash from pilot scale fl uidized bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86, 2186-2193.10.1016/j.fuel.2007.03.036Search in Google Scholar

6. Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. (2009). Quantitative evaluation of minerals in fl y ashes of biomass-coal mixture derived from circulating fl uidized bed combustion technology. J. Hazard. Mater., 169, 100-107.10.1016/j.jhazmat.2009.03.116Search in Google Scholar

7. Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., & Burwell, S. (2003). Advanced ash management technologies for CFBC ash. Waste Manage., 23, 506-513.10.1016/S0956-053X(02)00117-4Search in Google Scholar

8. Smith, K. R., Veranth, J. M., Lighty, J. S., & Aust, A. E. (1998). Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem. Res. Toxicol., 11, 1494-1500.10.1021/tx980142v9860493Search in Google Scholar

9. Solmon, F., Chuang, P. Y., Meskhidze, N., & Chem, Y. (2009). Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacifi c Ocean. J. Geophys. Res., 114, D02305.Search in Google Scholar

10. Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity. Geophys. Res. Lett., 30(21), 2085(5pp.).10.1029/2003GL018035Search in Google Scholar

11. Veranth, J. M., Smith, K. R., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mobilization of iron from coal fl y ash was dependent upon the particle size and source of coal: Analysis of rates and mechanisms. Chem. Res. Toxicol., 13, 382-389.10.1021/tx990188410813655Search in Google Scholar

12. Veranth, J. M., Smith, K. R., Huggins, F., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fl y ash. Chem. Res. Toxicol., 13, 161-164.10.1021/tx990213610725111Search in Google Scholar

13. Szumiata, T., Brzózka, K., Górka, B., Gawroński, M., Gzik-Szumiata, M., Świetlik, R., & Trojanowska, M. (2014). Iron speciation in coal fl y ashes - chemical and Mössbauer analysis. Hyperfi ne Interact., 226(1), 483-487.10.1007/s10751-013-0950-2Search in Google Scholar

14. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127-131.Search in Google Scholar

15. Roshan, L., & Sharma, S. D. (2003). Application of Mössbauer spectroscopy to study the effect of fl y-ash in agriculture soil. Indian J. Pure Appl. Phys., 41, 145-148.Search in Google Scholar

16. Stevens, J. G., Khasanov, A. M., Miller, J. M., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf.Search in Google Scholar

17. Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal ashes - SEM and Mössbauer results. Hyperfi ne Interact., 148, 21-29.10.1023/B:HYPE.0000003760.89706.f6Search in Google Scholar

18. Seung-Hyun, Cho, Jong-Ik, Yoo, Turley, A., Miller, C. A., Linak, W. P., Wendt, J., Huggins, F., & Gilmour, M. (2009). Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis. Proceedings of the Combustion Institute, 32, 2717-2725.Search in Google Scholar

19. Haihan, Ch., Laskin, A., Baltrusaitis, J., Gorski, Ch., Scherer, M., & Grassian, V. (2012). Coal fl y ash as a source of iron in atmospheric dust. Environmental Science Technologist, 46, 211-212.Search in Google Scholar

20. Oliweira, M., Waanders, F., Silva, L., Jasper, A., Sampaio, C., McHabe, D., Hatch, R., & Hower, J. (2011). A multi analytical approach to understand chemistry of Fe-minerals in fees coal and ashes. Coal Combustion and Gasifi cation Products, 3, 51-62.10.4177/CCGP-D-11-00006.1Search in Google Scholar

eISSN:
0029-5922
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Chemie, Nuklearchemie, Physik, Astronomie und Astrophysik, andere