Accès libre

57Fe Mössbauer spectroscopy investigations of iron phase composition in fluidized beds from the ELCHO power plant in Chorzów, Poland

À propos de cet article

Citez

1. Stout, W., Daily, M., Nickeson, T., Svendsen, R., & Thompson, G. (1997). Agricultural uses of alkaline fluidized bed combustion ash: case studies. Fuel, 76, 767-769.10.1016/S0016-2361(97)00001-XSearch in Google Scholar

2. Armesto, L., Bahillo, A., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in bubbling fl uidized bed. Biomass Bioenerg., 23, 171-176.10.1016/S0961-9534(02)00046-6Search in Google Scholar

3. Glinicki, M., & Zielinski, M. (2008). Air void system in concrete containing circulating fl uidized bed combustion fl y ash. Mater. Struct., 41, 681-687.10.1617/s11527-007-9273-6Search in Google Scholar

4. Shon, Ch. S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumow, G. C. (2010). Potential use of stockpiled circulating fl uidized bed combustion ashes in controlled low strength material (CLSM) mixture. Constr. Build. Mater., 24, 839-847.10.1016/j.conbuildmat.2009.10.022Search in Google Scholar

5. Koukouzas, N., Hãmãlãinen, J. Papanikolaou, A., Tourunen, T., & Jãntii, T. (2007). Mineralogical and elemental composition of fl y ash from pilot scale fl uidized bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86, 2186-2193.10.1016/j.fuel.2007.03.036Search in Google Scholar

6. Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. (2009). Quantitative evaluation of minerals in fl y ashes of biomass-coal mixture derived from circulating fl uidized bed combustion technology. J. Hazard. Mater., 169, 100-107.10.1016/j.jhazmat.2009.03.116Search in Google Scholar

7. Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., & Burwell, S. (2003). Advanced ash management technologies for CFBC ash. Waste Manage., 23, 506-513.10.1016/S0956-053X(02)00117-4Search in Google Scholar

8. Smith, K. R., Veranth, J. M., Lighty, J. S., & Aust, A. E. (1998). Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem. Res. Toxicol., 11, 1494-1500.10.1021/tx980142v9860493Search in Google Scholar

9. Solmon, F., Chuang, P. Y., Meskhidze, N., & Chem, Y. (2009). Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacifi c Ocean. J. Geophys. Res., 114, D02305.Search in Google Scholar

10. Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity. Geophys. Res. Lett., 30(21), 2085(5pp.).10.1029/2003GL018035Search in Google Scholar

11. Veranth, J. M., Smith, K. R., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mobilization of iron from coal fl y ash was dependent upon the particle size and source of coal: Analysis of rates and mechanisms. Chem. Res. Toxicol., 13, 382-389.10.1021/tx990188410813655Search in Google Scholar

12. Veranth, J. M., Smith, K. R., Huggins, F., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fl y ash. Chem. Res. Toxicol., 13, 161-164.10.1021/tx990213610725111Search in Google Scholar

13. Szumiata, T., Brzózka, K., Górka, B., Gawroński, M., Gzik-Szumiata, M., Świetlik, R., & Trojanowska, M. (2014). Iron speciation in coal fl y ashes - chemical and Mössbauer analysis. Hyperfi ne Interact., 226(1), 483-487.10.1007/s10751-013-0950-2Search in Google Scholar

14. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127-131.Search in Google Scholar

15. Roshan, L., & Sharma, S. D. (2003). Application of Mössbauer spectroscopy to study the effect of fl y-ash in agriculture soil. Indian J. Pure Appl. Phys., 41, 145-148.Search in Google Scholar

16. Stevens, J. G., Khasanov, A. M., Miller, J. M., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf.Search in Google Scholar

17. Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal ashes - SEM and Mössbauer results. Hyperfi ne Interact., 148, 21-29.10.1023/B:HYPE.0000003760.89706.f6Search in Google Scholar

18. Seung-Hyun, Cho, Jong-Ik, Yoo, Turley, A., Miller, C. A., Linak, W. P., Wendt, J., Huggins, F., & Gilmour, M. (2009). Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis. Proceedings of the Combustion Institute, 32, 2717-2725.Search in Google Scholar

19. Haihan, Ch., Laskin, A., Baltrusaitis, J., Gorski, Ch., Scherer, M., & Grassian, V. (2012). Coal fl y ash as a source of iron in atmospheric dust. Environmental Science Technologist, 46, 211-212.Search in Google Scholar

20. Oliweira, M., Waanders, F., Silva, L., Jasper, A., Sampaio, C., McHabe, D., Hatch, R., & Hower, J. (2011). A multi analytical approach to understand chemistry of Fe-minerals in fees coal and ashes. Coal Combustion and Gasifi cation Products, 3, 51-62.10.4177/CCGP-D-11-00006.1Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other